• Title/Summary/Keyword: secondary metabolic gene

Search Result 38, Processing Time 0.022 seconds

Efficacy of Korean Red Ginseng by Single Nucleotide Polymorphism in Obese Women: Randomized, Double-blind, Placebo-controlled Trial

  • Kwon, Dong-Hyun;Bose, Shambhunath;Song, Mi-Young;Lee, Myeong-Jong;Lim, Chi-Yeon;Kwon, Bum-Sun;Kim, Ho-Jun
    • Journal of Ginseng Research
    • /
    • v.36 no.2
    • /
    • pp.176-189
    • /
    • 2012
  • This study examined the effects of Korean red ginseng (KRG) on obese women and aimed to confirm that the effects of KRG on obesity differ dependently on a gene. Fifty obese women were recruited and randomized to receive KRG (n=24) or placebo (n=26) for 8 wk. Measurements of blood pressure, height, weight, waist circumference, waist-hip ratio (WHR), total fat mass, percentage of body fat, resting metabolic rate, basal body temperature, and daily food intake (FI), blood test (serum lipid, liver and renal function), Korean version of obesity-related quality of life scale (KOQOL), and a gene examination were performed. Comparisons of subjects before and after the administration of KRG revealed significant improvements of obesity in terms of weight, body mass index (BMI), WHR, FI, and KOQOL. However, in the comparison between KRG group and placebo group, only KOQOL was significantly different. KRG displayed significant efficacy on BMI and KOQOL in the CT genotype of the G protein beta 3 gene, but not in the CC genotype, on blood sugar test in the Trp64/Arg genotype of the beta 3 adrenergic receptor gene, but not in Trp64/Trp genotype, on KOQOL in the DD genotype of the angiotensin I converting enzyme gene, but not in the ID and DD genotypes. The effects of KRG on obesity were confirmed to some extent. However, a distinct effect compared to placebo was not confirmed. KRG is more effective for improving the secondary issues of the quality of life derived from obesity rather than having direct effects on the obesity-related anthropometric assessment and blood test indices.

Unraveling the Role of Cytochrome P450 as a Key Regulator Lantipeptide Production in Streptomyces globisporus

  • Da-Ran Kim;Su In Lee;Youn-Sig Kwak
    • The Plant Pathology Journal
    • /
    • v.39 no.6
    • /
    • pp.566-574
    • /
    • 2023
  • The aim of this study was to investigate the regulation of lantipeptide production in Streptomyces globisporus SP6C4, which produces the novel antifungal lantipeptides conprimycin and grisin, and to identify the role of cytochrome P450 (P450) in tis regulation. To investigate the regulation of lantipeptide production, we created gene deletion mutants, including ΔP450, ΔtsrD, ΔlanM, ΔP450ΔtsrD, and ΔP450ΔlanM. These mutants were characterized in terms of their morphology, sporulation, attachment, and antifungal activity against Fusarium oxysporum. The gene deletion mutants showed distinct characteristics compared to the wild-type strain. Among them, the ΔP450ΔlanM double mutant exhibited a recovery of antifungal activity against F. oxysporum, indicating that P450 plays a significant role in regulating lantipeptide production in S. globisporus SP6C4. Our findings highlight the significant role of P450 in the regulation of lantipeptide production and morphological processes in S. globisporus. The results suggest a potential link between P450-mediated metabolic pathways and the regulation of growth and secondary metabolism in SP6C4, thereby highlighting P450 as a putative target for the development of new antifungal agents.

Recent Updates on Acetaminophen Hepatotoxicity: The Role of Nrf2 in Hepatoprotection

  • Gum, Sang Il;Cho, Min Kyung
    • Toxicological Research
    • /
    • v.29 no.3
    • /
    • pp.165-172
    • /
    • 2013
  • Acetaminophen (APAP) known as paracetamol is the main ingredient in Tylenol, which has analgesic and anti-pyretic properties. Inappropriate use of APAP causes major morbidity and mortality secondary to hepatic failure. Overdose of APAP depletes the hepatic glutathione (GSH) rapidly, and the metabolic intermediate leads to hepatocellular death. This article reviews the mechanisms of hepatotoxicity and provides an overview of current research studies. Pharmacokinetics including metabolism (activation and detoxification), subsequent transport (efflux)-facilitating excretion, and some other aspects related to toxicity are discussed. Nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated gene battery plays a critical role in the multiple steps associated with the mitigation of APAP toxicity. The role of Nrf2 as a protective target is described, and potential natural products inhibiting APAP toxicity are outlined. This review provides an update on the mechanism of APAP toxicity and highlights the beneficial role of Nrf2 and specific natural products in hepatoprotection.

Genetic Manipulation and Transformation Methods for Aspergillus spp.

  • Son, Ye-Eun;Park, Hee-Soo
    • Mycobiology
    • /
    • v.49 no.2
    • /
    • pp.95-104
    • /
    • 2021
  • Species of the genus Aspergillus have a variety of effects on humans and have been considered industrial cell factories due to their prominent ability for manufacturing several products such as heterologous proteins, secondary metabolites, and organic acids. Scientists are trying to improve fungal strains and re-design metabolic processes through advanced genetic manipulation techniques and gene delivery systems to enhance their industrial efficiency and utility. In this review, we describe the current status of the genetic manipulation techniques and transformation methods for species of the genus Aspergillus. The host strains, selective markers, and experimental materials required for the genetic manipulation and fungal transformation are described in detail. Furthermore, the advantages and disadvantages of these techniques are described.

Development of Cucumber Cotyledon in View of Metabolic Pathways and Organelle (세포내 소기관과 물질대사의 관점에서 오이 떡잎의 발달)

  • Kim, Dae-Jae
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.778-785
    • /
    • 2021
  • The germination of cucumber seeds begins with the degradation of reserved oil to fatty acids within the lipid body, which are then further metabolized to acyl-CoA. The acyl-CoA moves from the lipid body to the glyoxysome following β-oxidation for the production of acetyl-CoA. As an initial carbon source supplier, acetyl-CoA is an essential molecule in the glyoxylate cycle within the glyoxysome, which produces the metabolic intermediates of citrate and malate, among others. The glyoxylate cycle is a necessary metabolic pathway for oil seed plant germination because it produces the metabolic intermediates for the tricarboxylic acid (TCA) cycle and for gluconeogenesis, such as the oxaloacetate, which moves to the cytosol for the initiation of gluconeogenesis by phophoenolpyruvate carboxykinase (PEPCK). Following reserved oil mobilization, the production and transport of various metabolic intermediates are involved in the coordinated operation and activation of multiple metabolic pathways to supply directly usable carbohydrate in the form of glucose. Furthermore, corresponding gene expression regulation compatibly transforms the microbody to glyoxysome, which contains the organelle-specific malate synthase (MS) and isocitrate lyase (ICL) enzymes during oil seed germination. Together with glyoxylate cycle, carnitine, which mediates the supplementary route of the acetyl-CoA transport mechanism via the mitochondrial BOU (A BOUT DE SOUFFLE) system, possibly plays a secondary role in lipid metabolism for enhanced plant development.

Biosynthetic pathway of shikimate and aromatic amino acid and its metabolic engineering in plants (식물에서 shikimate 및 방향족 아미노산 생합성 경로와 이의 대사공학적 응용)

  • Lim, Sun-Hyung;Park, Sang Kyu;Ha, Sun-Hwa;Choi, Min Ji;Kim, Da-Hye;Lee, Jong-Yeol;Kim, Young-Mi
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.135-153
    • /
    • 2015
  • The aromatic amino acids, which are composed of $\small{L}$-phenylalanine, $\small{L}$-tyrosine and $\small{L}$-tryptophan, are general components of protein synthesis as well as precursors for a wide range of secondary metabolites. These aromatic amino acids-derived compounds play important roles as ingredients of diverse phenolics including pigments and cell walls, and hormones like auxin and salicylic acid in plants. Moreover, they also serve as the natural products of alkaloids and glucosinolates, which have a high potential to promote human health and nutrition. The biosynthetic pathways of aromatic amino acids share a chorismate, the common intermediate, which is originated from shikimate pathway. Then, tryptophan is synthesized via anthranilate and the other phenylalanine and tyrosine are synthesized via prephenate, as intermediates. This review reports recent studies about all the enzymatic steps involved in aromatic amino acid biosynthetic pathways and their gene regulation on transcriptional/post-transcriptional levels. Furthermore, results of metabolic engineering are introduced as efforts to improve the production of the aromatic amino acids-derived secondary metabolites in plants.

OsF3H Gene Increases Insect Resistancy in Rice through Transcriptomic Changes and Regulation of Multiple Biosynthesis Pathways

  • Rahmatullah Jan;Saleem Asif;Kyung-Min Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.287-287
    • /
    • 2022
  • In this study, we analyze RNA-seq data from OxF3Hand WT at several points (Oh, 3 h, 12 h, and 24 h) after WBPH infection. A number of the genes were further validated by RT-qPCR. Results revealed that highest number of DEGs (4,735) between the two genotypes detected after 24 h of infection. Interestingly, many of the DEGs between the WT and OsF3H under control conditions were also found to be differentially expressed in OsF3H in response to WBPH infestation. These results indicate that significant differences in gene expression between the "OxF3H" and "WT" exist as the infection time increases. Many of these DEGs were related to oxidoreductase activity, response to stress, salicylic acid biosynthesis, metabolic process, defense response to pathogen, cellular response to toxic substance, and regulation of hormones level. Moreover, genes involved in salicylic acid (SA) and Ethylene (Et) biosynthesis were upregulated in OxF3H plants while jasmonic acid (JA), Brassinosteroid (Br), and abscisic acid (ABA) signaling pathways were found downregulated in OxF3H plant during WBPH infestation. Interestingly, many DEGs related to pathogenesis such as OsPR1, OsPR1b, NPR1, OsNPR3 and OsNPR5 were found significantly upregulated in OxF3H plants. Additionally, genes related to MAPKs pathway, and about 30 WRKY genes involved in different pathways were found upregulated in OxF3H plants after WBPH infestation. This suggests that overexpression of the OxF3H gene leads to multiple transcriptomic changes and impact plant hormones, pathogenic related and secondary metabolites related genes and enhancing the plant resistance to WBPH infestation.

  • PDF

Analysis of soyasaponin content and biosynthesis-related gene expression in young pea (Pisum sativum L.) sprouts

  • Gang Deok Han;HanGyeol Lee;Jae-Hyeok Park;Young Jae Yun;Gee Woo Kim;Sangyun Jeong;So-Yeon Moon;Hye-Young Seo;Young-Cheon, Kim;Woo Duck Seo;Jeong Hwan Lee
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.70-75
    • /
    • 2023
  • In legumes, soyasaponins, one of triterpenoid saponins, are major components of secondary metabolites with a more diverse array of bioactive chemicals. Although the biosynthetic pathway of soyasaponins has been largely studied in soybean, the study on the soyasaponin contents and biosynthesis-related gene expression in pea (Pisum sativum L.) is poorly understood. Here, we found the accumulation of only soyasaponin Bb component in the sprouts of two Korean domestic pea cultivars (Dachung and Sachul). This pattern was consistent with our observation that increased expression of PsUGT73P2 and PsUGT91H4 genes, but not PsCYP72A69, could be responsible for biosynthesis of only soyasaponin Bb in pea by examining their gene expression. However, gradual accumulation of soyasaponin Bb at developmental stages was not consistent with the expression of PsUGT73P2 and PsUGT91H4, suggesting that the changes of their protein activities may affect the accumulation patterns of soyasaponin Bb. We also revealed that the increased expression levels of PsUGT73P2 and PsUGT91H4 during light to dark transition led to increase of soyasaponin Bb contents. Collectively, our results provided a molecular basis of metabolic engineering for enhancing useful soyasaponin Bb metabolites in Korean domestic pea cultivars.

Clinical and Endocrine Characteristics of Patients with McCune-Albright Syndrome (McCune-Albright 증후군의 임상적 및 내분비학적 특징)

  • Kwun, Yoojin;Kim, Yoo-Mi;Kim, Ja-Hye;Choi, Jin-Ho;Yoo, Han-Wook
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.13 no.2
    • /
    • pp.120-125
    • /
    • 2013
  • Purpose: McCune-Albright syndrome (MAS) is caused by activating mutations in the GNAS gene, resulting in peripheral precocious puberty, caf$\acute{e}$-au-lait spots, and polyostotic fibrous dysplasia (POFD). The aim of the present study was to describe the diverse clinical and endocrine characteristics of patients with MAS. Methods: Seven patients with MAS were included in this study and medical charts were reviewed retrospectively for following parameters: patient's sex and age at diagnosis, POFD, ovarian cysts, and precocious puberty. Results: The mean age at diagnosis was $5.8{\pm}4.2$ years. One patient was male (14%) and the other six patients were female (86%). Peripheral precocious puberty was associated with 6 patients (86%). Five patients manifested premature menarche as early as 2 to 5 years of age. Letrozole was administered to 4 patients, tamoxifen to one patient and GnRH agonist to one patient. Five females developed ovarian cysts. Thyroid function tests were performed in all patients and one patient showed hyperthyroidism (14%) and has been treated with methimazole. One patient presented with pseudohypoparathyroisdism, phosphaturia, calciuria suggesting hypophosphatemic rickets. Six patients (86%) revealed POFD. One patient had symptoms of optic nerve compression and secondary esotropia and 2 patients had bone pain. Conclusion: This study described clinical characteristics and endocrine complications of patients with MAS. Careful physical examinations with history taking and serial endocrine function tests should be needed to detect complications such as endocrinologic hyperfunction and POFD.

  • PDF

Application of Pac-Bio Sequencing, Trinity, and rnaSPAdes Assembly for Transcriptome Analysis in Medicinal Crop Astragalus membranaceus

  • Ji-Nam Kang;Si Myung Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.254-254
    • /
    • 2022
  • Astragalus membranaceus (A. membranaceus) has traditionally been used as a medicinal plant in East Asia for the treatment ofvarious diseases. A. membranaceus belongs to the legume family and is known to be rich in substances such as flavonoids and saponins. Recent pharmacological studies of A. membranaceus have shown that the plant has immunomodulatory, anti-oxidant, anti-cancer, and anti-inflammatory effects. However, knowledge of major biosynthetic pathways in A. membranaceu is still lacking. Recently developed sequencing techniques enable high-quality transcriptome analysis in plants, which is recognized as an important part in elucidating the regulatory mechanisms of many plant secondary metabolic pathways. However, it is difficult to predict the number of transcripts because plant transcripts contain a large number of isoforms due to alternative splicing events, which can vary depending on the assembly platform used. In this study, we constructed three unigene sets using Pac-Bio isoform sequencing, Trinity and rnaSPAdes assembly for detailed transcriptome analysis mA. membranaceus. Furthermore, all genes involved in the flavonoid biosynthetic pathway were searched from three unigene sets, and structural comparisons and expression profiles between these genes were analyzed. The isoflavone synthesis was active in most tissues. Flavonol synthesis was mainly active in leaves and flowers, and anthocyanin synthesis was specific in flowers. Gene structural analysis revealed structural differences in the flavonoid-related genes derived from the three unigene sets. This study suggests the need for the application of multiple unigene sets for the analysis of key biosynthetic pathways in plants.

  • PDF