• 제목/요약/키워드: secondary ions

검색결과 224건 처리시간 0.027초

전자빔 인출을 위한 2차전자방출 특성 연구 (Characteristics of Secondary Electron Emission for Electron Beam Extraction)

  • 우성훈;이홍식;이광식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.204-206
    • /
    • 2003
  • Electron beam generator of cold cathode type has been developed for industrial application, for example, waste water cleaning, flue gas cleaning, and pasteurization etc. The operational principle is based on the emission of secondary electrons from cold cathode when ions in the plasma hit the cathode, which are accelerated toward exit window by the gradient of an electric potential. The characteristics of secondary electron emission are studied by comparing total cathode current with ion current.

  • PDF

부산지역 내륙과 해안의 $PM_{10}$ 중의 금속농도와 이온농도 특성 (Characteristics of Metallic and Ionic Concentration in $PM_{10}$ at Inland and Seashore in Busan)

  • 전병일;황용식;오광중
    • 환경영향평가
    • /
    • 제19권3호
    • /
    • pp.323-333
    • /
    • 2010
  • $PM_{10}$ mass were measured in Gwaebeopdong (inland) and Dongsamdong (seashore) of Busan in summer and fall, 2007 and the 24-hour averaged samples were analyzed to investigate temporal and spatial variability of metallic elements and water-soluble ions in $PM_{10}$. Overall average concentrations of $PM_{10}$ mass during the study period were 72.7 ${\mu}g/M^3$ and 64.3 ${\mu}g/M^3$ in Gwaebeopdong and Dongsamdong, respectively. As for metal elements, averaged concentrations of crustal components, Ca, Fe, K, Mn, and Ti, in Gwaebeopdong exhibited enhancement relative to Dongsamdong. Non-crustal elements, Pb and Cu, displayed elevated levels in Gwaebeopdong while Ni and Zn were observed to be high in Dongsamdong. Averaged nitrate concentration in Gwaebeopdong (6.36 ${\mu}g/M^3$) was greater than in Dongsamdong(5.68 ${\mu}g/M^3$) and both areas had higher level of nitrate in summer than in fall. Averaged sulfate concentrations in Dongsamdong (25.4%) exhibited elevated level relative to Gwaebeopdong (19.4%). Overall average contribution of water-soluble ions to $PM_{10}$ in Dongsamdong (47.5%) was higher than in Gwaebeopdong (37.8%). The average mass fractions of secondary ions in $PM_{10}$ were elevated in Dongsamdong (37.1%) as compared to Gwaebeopdong (31.4%). Equivalent ratio of [${SO_4}^{2-}/NO_3{^-}$] was seen to be lower in Gwaebeopdong (1.39) than that in Dongsamdong (1.79) and consistently higher in summer than in fall for both areas.

Detachment of nanoparticles in granular media filtration

  • Kim, Ijung;Zhu, Tongren;Jeon, Chan-Hoo;Lawler, Desmond F.
    • Membrane and Water Treatment
    • /
    • 제11권1호
    • /
    • pp.1-10
    • /
    • 2020
  • An understanding of particle-particle interactions in filtration requires studying the detachment as well as the attachment of nanoparticles. Nanoparticles captured in a granular media filter can be released by changing the physicochemical factors. In this study, the detachment of captured silver nanoparticles (AgNPs) in granular media filtration was examined under different ionic strengths, ion type, and the presence or absence of natural organic matter (NOM). Filtration velocity and ionic strength were chosen as the physical and chemical factors to cause the detachment. Increasing filtration velocity caused a negligible amount of AgNP detachment. On the other hand, lowering ionic strength showed different release amounts depending on the background ions, implying a population of loosely captured particles inside the filter bed. Overall detachment was affected by ionic strength and ion type, and to a lesser degree by NOM coating which resulted in slightly more detachment (in otherwise identical conditions) than in the absence of that coating, possibly by steric effects. The secondary energy minimum with Na ions was deeper and wider than with Ca ions, probably due to the lack of complexation with citrate and charge neutralization that would be caused by Ca ions. This result implies that the change in chemical force by reducing ionic strength of Na ions could significantly enhance the detachment compared to that caused by a change in physical force, due to a weak electrostatic deposition between nanoparticles and filter media. A modification of the 1-D filtration model to incorporate a detachment term showed good agreement with experimental data; estimating the detachment coefficients for that model suggested that the detachment rate could be similar regardless of the amount of previously captured AgNPs.

부산 구덕산 미세먼지의 금속성분 및 이온성분 농도 특성 (Characteristics of Metallic and Ionic Elements Concentration in PM10 at Guducsan in Busan)

  • 전병일
    • 한국환경과학회지
    • /
    • 제25권5호
    • /
    • pp.715-726
    • /
    • 2016
  • This study investigates the characteristics of metallic and ionic elements concentration, concentration according to transport path, and factor analysis in $PM_{10}$ at Guducsan in Busan in the springtime of 2015. $PM_{10}$ concentration in Guducsan and Gwaebeopdong were $59.5{\pm}9.04{\mu}g/m^3$ and $87.5{\pm}20.2{\mu}g/m^3$, respectively. Contribution rate of water-soluble ions and secondary ion in $PM_{10}$ concentration in Guducsan were 37.0% and 27.8% respectively. [$NO_3{^-}/SO{_4}^{2-}$] ratio and contribution rate of sea salt of $PM_{10}$ in Guducsan and Gwaebeopdong were 0.91 and 1.12, 7.0% and 5.3%, respectively. The results of the backward trajectory analysis indicates that $PM_{10}$ concentration, total inorganic water-soluble ions and total secondary ions were high when the air parcels moved from Sandong region in China than non-Sandong and northen China to Busan area. The results of the factor analysis at Guducsan indicates that factor 1 was anthropogenic source effects such as automobile emissions and industrial combustion processes, factor 2 was marine sources such as sea salts from sea, and factor 3 was soil component sources.

Generation of Water Droplet Ion Beam for ToF-SIMS Analysis

  • Myoung Choul Choi;Ji Young Baek;Aram Hong;Jae Yeong Eo;Chang Min Choi
    • Mass Spectrometry Letters
    • /
    • 제14권4호
    • /
    • pp.147-152
    • /
    • 2023
  • The increasing demand for two-dimensional imaging analysis using optical or electronic microscopic techniques has led to an increase in the use of simple one-dimensional and two-dimensional mass spectrometry imaging. Among these imaging methods, secondary-ion mass spectrometry (SIMS) has the best spatial resolution using a primary ion beam with a relatively insignificant beam diameter. Until recently, SIMS, which uses high-energy primary ion beams, has not been used to analyze molecules. However, owing to the development of cluster ion beams, it has been actively used to analyze various organic molecules from the surface. Researchers and commercial SIMS companies are developing cluster ion beams to analyze biological samples, including amino acids, peptides, and proteins. In this study, a water droplet ion beam for surface analysis was realized. Water droplets ions were generated via electrospraying in a vacuum without desolvation. The generated ions were accelerated at an energy of 10 keV and collided with the target sample, and secondary ion mass spectra were obtained for the generated ions using ToF-SIMS. Thus, the proposed water droplet ion-beam device showed potential applicability as a primary ion beam in SIMS.

Solution-based fabrication of germanium sulphide doped with or without Li ions for solid electrolyte applications

  • Jin, Byeong Kyou;Cho, Yun Gu;Shin, Dong Wook;Choi, Yong Gyu
    • Journal of Ceramic Processing Research
    • /
    • 제13권spc1호
    • /
    • pp.110-113
    • /
    • 2012
  • Ge-S and Li-Ge-S powders were synthesized via solution-based process in order to employ chalcogenide-based solid electrolyte for use in Li secondary batteries. GeCl4 and thioacetamide in combination result in Ge-S powders of which major crystalline phase becomes GeS2 where the tetragonal and orthorhombic phases coexist after heat treatment. A chemical treatment using NaOH brings about the reduction of chlorine in the powders obtained. However, the heat treatment at 300 ℃ is more effective in minimizing the chlorine content. When lithium chloride is used as the precursor of Li ions, the LiCl powders are agglomerated with an inhomogeneous distribution. When Li2S is used, the Li-Ge-S powders are distributed more uniformly and the orthorhombic GeS2 phase dominates in the powders.

Influence of gas mixture ratio on the secondary electron emission coefficient ($\gamma$) fo MgO single crystals and MgO protective layer in AC PDP

  • Lim, Jae-Yong;Jung, J.M.;Choi, M.C.;Ahn, J.C.;Cho, T.S.;Kim, T.Y.;Kim, S.S.;Jung, M.W.;Choi, S.H.;Kim, S.B.;Ko, J.J.;Kim, D.I.;Lee, C.W.;Seo, Y.;Cho, G.S.;Kang, S.O.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 춘계학술대회 논문집 디스플레이 광소자 분야
    • /
    • pp.145-147
    • /
    • 2000
  • The secondary electron emission coefficient y of MgO single crystal according to the gas mix-ture ratio of Xe, $N_2$ to Ne have been investigated by $\gamma$-focused ion beam system. It is found that the MgO single crystals of (111) crystallinity has the highest $\gamma$ for operating Ne(Xe) ions ranging from 50eV to 200eV throughout this experiment. And it is found that the $\gamma$ for gas mixtures are much smaller than pure Ne ions.

  • PDF

Effect of metal ions on the secondary structure and activity of calf intestine phosphatase

  • Chen, Fengjuan;Liu, Guoqi;Xu, Zhihong;Zeng, Zhengzhi
    • BMB Reports
    • /
    • 제41권4호
    • /
    • pp.305-309
    • /
    • 2008
  • Cobalt is an essential microelements in many biological processes involving enzymatic activity. We found that $Zn^{2+}$ and $Mg^{2+}$, which are in the active site of native calf intestine alkaline phosphatase (CIP), can be replaced by $Co^{2+}$ directly in solution. The effect of $Co^{2+}$ concentration on the substitution reaction was examined at ratios of [$Co^{2+}$]/[CIP] from 0:1 to 8:1. The quantity of $Zn^{2+}$ in CIP decreased progressively as the ratio was increased, but the amount of $Mg^{2+}$ changed in irrregular fashion. A series of active site models of the reaction mechanism of CIP are proposed. Low pH was found to promote the replacement of $Mg^{2+}$ by $Co^{2+}$. To understand how the substitution affects the enzyme, we also solved the secondary structure of CIP after reaction with $Co^{2+}$ in different conditions.

Rutile 단결정에서 산소의 확산과 점결합 (Oxygen Diffusion and Point Defects in Single Crystal Rutile)

  • 김명호;박주석;변재동
    • 한국세라믹학회지
    • /
    • 제28권12호
    • /
    • pp.989-995
    • /
    • 1991
  • By means of the secondary ion mass spectrometer, the tracer diffusion of oxygen in rutile single crystal was measured as function of temperature and oxygen partial pressure. The tracer diffusivity was determined from the depth profile of 18O. The Po2 dependence of D suggests that the dominant defects in TiO2-y are oxygen vacancies (V{{{{ { ‥} atop { o} }}) and interstitial titanium ions (Ti{{{{ {‥‥} atop {i} }}). The doubly ionized oxygen vacancies are prominent at low temperature and Po2. However, the tetravalent interstitial titanium ions predominate at teperature above 120$0^{\circ}C$.

  • PDF

Concentration Variations in Primary and Secondary Particulate Matter near a Major Road in Korea

  • Ghim, Young Sung;Won, Soo Ran;Choi, Yongjoo;Chang, Young-Soo;Jin, Hyoun Cher;Kim, Yong Pyo;Kang, Chang-Hee
    • Asian Journal of Atmospheric Environment
    • /
    • 제10권1호
    • /
    • pp.32-41
    • /
    • 2016
  • Particle-phase concentrations were measured at 10, 80, and 200 m from the roadside of a national highway near Seoul in January and May 2008. The highway has two lanes each way, with an average hourly traffic volume of 1,070 vehicles. In January 2008, $PM_{10}$ concentrations decreased from 10 to 80 m but increased at 200 m. Black carbon (BC) decreased only slightly with distance due to the influence of biomass burning and open burning from the surrounding areas. In May 2008, the effect of secondary formation on both $PM_{10}$ and $PM_{2.5}$ was significant due to high temperatures compared with January. Because on-road emissions had little effect on secondary formation for a short time, variations in $PM_{10}$ concentrations became smaller, and $PM_{2.5}$ concentrations increased with distance. The effects of fugitive dust on PM concentrations were greater in May than in January when the mean temperature was below freezing. In the composition variations, the amounts of primary ions, organic carbon (OC), and BC were larger in January, while those of secondary ions and others were larger in $PM_{10}$, as well as $PM_{2.5}$ in May.