• 제목/요약/키워드: second generation cloning

검색결과 5건 처리시간 0.02초

반복핵이식에 의한 복제동물 생산에 관한 연구 III. 토끼에서 제3세대 복제수정란의 생산 (Study on Production of Cloned Animals by Recycling Nuclear Transplantation III. Production of Third Generation Cloned Embryos in Rabbits)

  • 이효종;전병균;윤희준;박충생;최상용;윤창현;강대진
    • 한국임상수의학회지
    • /
    • 제12권1호
    • /
    • pp.877-886
    • /
    • 1995
  • The recycling nuclear transplantation(NT) technique has the powerful potential of producing a large number of genetically identical embryos and offsprings from one embryo. Multiple generational cloning by this technique utilizes the NT embryo itself as the donor for the next generation of cloning. In this experiment, we have produced the third generational cloned embryos by recycling NT. Further we examined comparatively the electrofusion rate and in vitro developmental potential in the cloned embryos of the first second and third generations. The embryos of 16-cell stage were collected from the mated does by flushing oviducts with Dulberco's phosphate buffered saline containing 10 % fetal calf serum(FCS) at 47 hours after hCG injection. In the first generation NT, the nuclear donor embryos were synchronized in the phase of Gl/S transition of 32-cell stage. The first and second generation NT embryos developed to 16-cell were used as donor nuclei for second and third generation. The recipient cytoplasms were utilized the oocytes collected at 14 hours after hCG injection, following revoming the nucleus and the first polar body by micromanipulation. The separated blastomeres were injected into the enucleated recipient oocytes by micromanipulation and were fused by electrical stimulation. The electrofusion rate was seen to be 78.0, 88.0 and 90.3 % in the first second and third generation NT rabbit embryos, respectively. The fused oocytes were co-cultured with a monolayer of rabbit oviductal epithelial cells in M-199 solution containing 10 % FCS for 120 hours at 39$^{\circ}C$ in a 5% $CO_2$ incubator. The in vitro developmental potential to blastocyst stage was significantly(P<0.05) decreased in the third(7.2 %) generation NT embryos compared to the first(53.1 %) and second(16.1 %) generation NT embryos. Following in vitro development to blastocyst stage, they were stained with Hoechst 33342 dye for counting the number of blastomeres by fluorescence microscopy. The mean blastomere numbers and cell cycle numbers of NT embryos during the culture period were significantly(p<0.05) decreased in the second(93.9 cells and 6.55 cylces) and third(81.5 cells and 1.35 cylces) generation, compared to the first(189.9 cells and 7.55 cylces) generation.

  • PDF

반복핵이식에 의한 복제동물 생산에 관한 연구 II. 토끼에서 공핵배의 세포주기 조절에 의한 제2세대 복제배의 생산효율 개선 (Study on Production of Cloned Animals by Recycling Nuclear Transplantation II. Improved Second Generation Cloning of Rabbit Embryos Using Donor Nuclei with Synchronized Cell Cycles)

  • 이효종;전병균;박충생;최상용;윤창현;강대진
    • 한국수정란이식학회지
    • /
    • 제10권1호
    • /
    • pp.73-82
    • /
    • 1995
  • large scale production of cloned embryos requires the technology of multiple generation nuclear transplantation(NT) using NT embryos as the subsequent donor nuclei. The purposes of this study were producing the second generation cloned rabbit embryos, and also to determine the electrofusion rate and in vitro developmental potential comparatively in the cloned embryos of the first and second NT generation. The embryos of 16-cell stage were collected from the mated does by flushing oviducts with Dulbecco's phosphate buffered saline(D-PBS) containing 10% fetal calf serum(FCS) at 47 hours after hCG injection In the first generation NT, the nuclear donor embryos were synchronized in the phase of Gi /S transition of 32-cell stage. The first generation NT embryos which were developed to 8-cell were synchronized in Gi /S transition phase of the following 16-cell stage and used as donor nuclei for second generation Synchronization of the cell cycle of blastomeres was induced, first, using an inhibitor of microtuble polymerization, colcemid for 10 hours to arrest blastomeres in M phase, and secondly, using a DNA synthesis inhibitor, aphidicolin for 1.5 to 2 hours to arrest them in Gi /S transition boundary. The recipient cytoplasms were obtained by removing the nucleus and the first polar body from the oocytes collected at 14 hours after hCG injection. The separated donor blastomeres were injected into the enucleated recipient oocytes by micromanipulation and were electrofused by electrical stimulation of three pulses for 60 $\mu$sec at 1.25 kV /cm in 0.28 M rnannitol solution The fused oocytes were co-cultured with a monolayer of rabbit oviductal epithelial cells in M-199 solution containing 10% FCS for 120 hours at 39$^{\circ}C$ in a 5% $CO_2$ incubator. Following in vitro culture of the first and second generation cloned embryos to blastocyst stage, they were stained with Hoechst 33342 dye for counting the number of blastomeres by fluorescence microscopy. The results obtained were summarized as follows: 1. The electrofusion rate was found to be similar as 79.4 and 91.5% in the first and second generation NT rabbit embryos, respectively. 2. The in vitro developmental potential to blastocyst stage of the second generation NT embryos (23.3%) was found significantly(p<0.05) lower, compared with that of the first generation NT embryos (56.8%). 3. The mean blastomeres counts of embryos developed to blastosyst stage following in vitro culture for 120 hours and also their daily cell cycles during the culture period were decreased significantly (p<0.05) to 104.3 cells and 1.33 cylces in the second NT generation, compoared with 210.4 cells and 1.54 cycles in the first NT generation, respectively.

  • PDF

토끼에서 수핵란의 세포질 활성화에 의한 제 2세대 복제수정란의 생산 (Production of Second Generational Cloning Embryos with Activated Oocytes in Rabbits)

  • 이효정;윤희준;최창용;공일근;박충생;최상용
    • 한국수정란이식학회지
    • /
    • 제12권2호
    • /
    • pp.133-139
    • /
    • 1997
  • Large scale production of cloned embryos requires the technology of multiple generational nuclear transfer(NT) by using NT embryos itself as the subsequent donor nuclei. In this work we investigated comparatively the effects of enucleated oocytes treated with ionomycin and 6-DMAP on the electrofusion rate and in vitro developmental potential in the first and second NT embryos. The embryos of 16-cell stage were collected from the mated does by flushing oviducts with Dulbecco's phosphate buffered saline(D-PBS) containing 10% fetal calf serum(FCS) at 47 hours after hCG injection. The recipient cytoplasms were obtained by removing the nucleus and the first polar body from the oocytes collected at 15 hours after hCG injection. The enucleated oocytes were pre-activated by 5 min incubation in 5$\mu$M ionomycin and 2 hours incubation in 2 mM 6-DMAP at 19~20 hours post-hCG before microinjection. In the first and second generation NT, the unsynchronized 16-cell stage embryos were used as nuclear donor. The separated donor blastomeres were injected into the enucleated activated recipient oocytes by micromanipulation and were electrofused by electrical stimulation of single pulse for 60 $\mu$sec at 1.25kV/cm in $Ca^2$+, $Mg^2$+ - free 0.28 M mannitol solution. In the non-preactivation group, the electrofusion and electrical stimulation was given 3 pulses for 60 $\mu$sec at 1.25 kV/cm in 100$\mu$M $Ca^2$+, $Mg^2$+ 0.28 M mannitol solution. The fused oocytes were co-cultured with a monolayer of rabbit oviductal epithelial cells in TCM-199 solution containing 10% FCS for 120 hours at 39$^{\circ}C$ in a 5% $CO_2$ incubator. The results obtained were summarized as follows: 1. In the first generational NT embryos, the electrofusion rate of preactivated and non-activated oocytes(80.4 and 87.8%) was not significantly different, but in the second generational NT embryos, the electrofusion rate was significantly(P<0.05) higher in the non-activated oocytes(85.7%) than in the preactivated oocytes(70.1%). 2) In the first and second generational NT embryos, the developmental potential to biastocyst stage was significantly(P<0.05) higher in the preactivated oocytes(39.3 and35.7%) than in the non-preactivated oocytes(16.0 and 13.3%). No significant difference in the developmental potential was shown between the first and second generational NT embryos derived from the preactivated oocytes. In conclusion, it may be efficient to use the oocytes preactivated with ionomycin and 6-DMAP for the multiple production of cloned embryos by recycling nuclear transfer.

  • PDF

Generation of Full-Length Infectious cDNA Clones of Middle East Respiratory Syndrome Coronavirus

  • Lee, Jeong Yoon;Bae, Sojung;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권6호
    • /
    • pp.999-1007
    • /
    • 2019
  • Middle East respiratory syndrome coronavirus (MERS-CoV) was first identified in Saudi Arabia in 2012 and related infection cases have been reported in over 20 countries. Roughly 10,000 human cases have so far been reported in total with fatality rates at up to 40%. The majority of cases have occurred in Saudi Arabia with mostly sporadic outbreaks outside the country except for the one in South Korea in 2015. The Korean MERS-CoV strain was isolated from the second Korean patient and its genome was fully sequenced and deposited. To develop virus-specific protective and therapeutic agents against the Korean isolate and to investigate molecular determinants of virus-host interactions, it is of paramount importance to generate its full-length cDNA. Here we report that two full-length cDNAs from a Korean patient-isolated MERS-CoV strain were generated by a combination of conventional cloning techniques and efficient Gibson assembly reactions. The full-length cDNAs were validated by restriction analysis and their sequence was verified by Sanger method. The resulting cDNA was efficiently transcribed in vitro and the T7 promoter-driven expression was robust. The resulting reverse genetic system will add to the published list of MERS-CoV cDNAs and facilitate the development of Korean isolate-specific antiviral measures.

Coupling Efficiencies of m1, m3 and m5 Muscarinic Receptors to the Stimulation of Neuronal Nitric Oxide Synthase

  • Park, Sun-Hye;Lee, Seok-Yong;Cho, Tai-Soon
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 춘계학술대회
    • /
    • pp.207-207
    • /
    • 1996
  • Through molecular cloning, five muscarinic receptors have been identified. The muscarinic receptors can be generally grouped according to their coupling to either stimulation of phospholipase C (m1, m3, and m5) or the inhibition of adenylate cyclase (m2 and m4). Each m1, m3, and m5 receptors has the additional potential to couple to the activation of phospholipase A$_2$, C, and D, tyrosine kinase, and the mobilization of Ca$\^$2+/. However, the differences in coupling efficiencies to different second messenger systems between these receptors have not been studied well. Ectopic expression of each of these receptors in mammalian cells has provided the opportunity to evaluate the signal transduction of each in some detail. In this work we compared the coupling efficiencies of the m1, m3 and m5 muscarinic receptors expressed in chinese hamster ovary (CHO) cells to the Ca$\^$2+/ mobilization and the stimulation of neuronal nitric oxide synthase (nNOS). Because G protein/PLC/PI turnover/[(Ca$\^$2+/])i/NOS pathway was supposed as a main pathway for the production of nitric oxide via muscarinic receptors, we studied on ml, m3 and m5 receptors. Stimulation of guanylate cyclase activity in detector neuroblastoma cells was used as an index of generation nitric oxide (NO) in CHO cells. The agonist carbachol increased the cGMP formation and the intracellular [Ca$\^$2+/] in concentration dependent manner in three types of receptors and the increased cGMP formation was significantly attenuated by scavenger of NO or inhibitor of NOS. m5 receptors was most efficiently coupled to stimulation of nNOS, And, the coupling efficiencies to the stimulation of neuronal nitric oxide synthase in three types of receptors were parallel with them to the Ca$\^$2+/ mobilization.

  • PDF