• Title/Summary/Keyword: seawater exchange ratio

Search Result 17, Processing Time 0.022 seconds

Seawater Exchange Ratio in Small Bay (소내만의 해수교환율)

  • Park, Byeong-Su;Ryu, Cheong-Ro
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.4
    • /
    • pp.266-274
    • /
    • 1997
  • To understand seawater exchange are important to analyze the formation of watermass, material circulation and transfer of pollutant material etc. The purpose of this study is to review the previous studies and to propose new exchange ratio. where,$C_1$ ; average salinity of the water at low water$C_2$ ; average salinity of the water at the next low water$C_0$ ; average salinity of the water passing the bay mouth on the flood tide$V_2$ ; total water volume of the bay on the low water$V_0$ ; the volume of the remaining outer bay water entering during the flood tideSeawater exchange ratio of Dongho Bay calculated by new method are 26.1%, 23.8% respectevely.The average fresh water residence ratio calculated by equation (12) is 2.2 days, that is corresponding 23.5 % of exchange ratio. Thus, it appears similar result as proposed exchange ratio.

  • PDF

A study on propagation of uncertainties for a mixing ratio calculation by seawater intrusion (해수침투 발생 시 혼합비 계산의 오차에 관한 연구)

  • Lee, Jeonghoon
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.5
    • /
    • pp.579-584
    • /
    • 2018
  • It is crucial to determine a mixing ratio using an end-member mixing analysis when there is seawater intrusion. In this study, an error from the calculation of the mixing ratio between seawater and freshwater based on the principles of uncertainty was determined. I present the errors in the calculated mixing ratios as a function of the chemical difference between the mean seawater concentrations and standard deviations. The error is caused by: (1) the mixing ratio between seawater and freshwater; (2) the difference between the mean concentration and the standard deviation; and (3) the difference of the tracer concentration between freshwater and seawater (inversely). In particular, the error may determine hydrogeochemical process (either precipitation or dissolution) when a value of ionic delta (difference between measured and theoretical concentration) is close to zero during cation exchange by seawater intrusion.

Marine Environmental Change Due to Waterfront Development

  • Lee, Moon-Ock;Lee, Sam-No
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.1
    • /
    • pp.33-39
    • /
    • 1999
  • A two-dimensional numerical experiment and field observations were conducted to evaluate changes in sea water movement and the water quality environment related to comprehensive projects of waterfront development around Kwangyang Bay on the south coast of Korea. Tidal flow velocities, especially in the western part of the bay, were considerably slower as a result of the development projects. Accordingly, the seawater exchange ratio reduced from 38.7% to 26.3%. The impact of dredging work on the water quality environment was much stronger than expected. Furthermore, after the completion of the industrial parks and container-exclusive wharfs, COD from the waste water treatment plant will be dispersed extensively into the adjacent water at a level of less than 0.1 mg/l for up to 142.5 $\textrm{km}^2$. Therefore, consistent monitoring and management of the water quality environment is strongly recommended.

  • PDF

A Study on the Sea Water Flow in Danghang Bay (당항만의 해수유동에 관한 연구)

  • Kim, Chang-Je;Kim, Mi-Kum;Son, Chang-Bae;Kang, Sung-Jin
    • Journal of Navigation and Port Research
    • /
    • v.26 no.2
    • /
    • pp.227-233
    • /
    • 2002
  • Recently, the water pollution of coastal sea area including harbor, bay and inland sea has been very serious and it causes u\\various environmental impacts. In this study, water flow system of Danghnag Bay, which has the narrow and long topographical characteristics with the narrow bay mouth and its flow is influenced principally by the tidal current, is investigated experimentally and numerically. In order to understand the tidal system of Danghang Bay, harmonic analysis is performed based on measured tidal range and flow velocity. In addition, numerical model for tidal exchange is developed considering conditions of Danghang Bay. Calculated results show good agreement with measurement. Lastly, based on the proposed numerical model, exchange ratio of seawater volume in Danghang Bay is predicted.

A computer simulation of ion exchange membrane electrodialysis for concentration of seawater

  • Tanaka, Yoshinobu
    • Membrane and Water Treatment
    • /
    • v.1 no.1
    • /
    • pp.13-37
    • /
    • 2010
  • The performance of an electrodialyzer for concentrating seawater is predicted by means of a computer simulation, which includes the following five steps; Step 1 mass transport; Step 2 current density distribution; Step 3 cell voltage; Step 4 NaCl concentration in a concentrated solution and energy consumption; Step 5 limiting current density. The program is developed on the basis of the following assumption; (1) Solution leakage and electric current leakage in an electrodialyzer are negligible. (2) Direct current electric resistance of a membrane includes the electric resistance of a boundary layer formed on the desalting surface of the membrane due to concentration polarization. (3) Frequency distribution of solution velocity ratio in desalting cells is equated by the normal distribution. (4) Current density i at x distant from the inlets of desalting cells is approximated by the quadratic equation. (5) Voltage difference between the electrodes at the entrance of desalting cells is equal to the value at the exits. (6) Limiting current density of an electrodialyzer is defined as average current density applied to an electrodialyzer when current density reaches the limit of an ion exchange membrane at the outlet of a desalting cell in which linear velocity and electrolyte concentration are the least. (7) Concentrated solutions are extracted from concentrating cells to the outside of the process. The validity of the computer simulation model is demonstrated by comparing the computed results with the performance of electrodialyzers operating in salt-manufacturing plants. The model makes it possible to discuss optimum specifications and operating conditions of a practical-scale electrodialyzer.

Physicochemical Characteristics of Groundwater Salinization in the eastern aea of Cheju Island (제주도 동부지역 지하수의 염수화와 이화학적 특성)

  • Oh, Youn-Keun;Kim, Kyung-Hoo;Ryu, Seong-Pil
    • Journal of Environmental Science International
    • /
    • v.9 no.3
    • /
    • pp.253-259
    • /
    • 2000
  • The purpose of this study is to investigate the physicochemical characteristics of salinization of groundwater at the estern area of Cheju island. For this purpose, the major ions of groundwater, spring water are analyzed. The concentration of $Cl^-$ and Na^++K^+$/ contained in the groundwater at near the coastline are higher than those at inland area away from the coastline. The water quality components of groundwater observed at this area can be classified into 4 types such as Na-Cl, $HCO_3, Na-Cl-HCO_3$ and Ca-HCO$_3$. The concentration ratio of $SO_4^1 to Cl^- is 0.1354(R^2=0.972)$ at this area. This value is very similar with Dittomer's ratio of 0.13. For Na^+, K^+, and Mg^{2+}/ versus Cl^-$, their ratios also show a significant relationship between sea water and groundwater in this area. From the chloride-bicarbonate ratio, it can be estimated that the intrusion distance of seawater from coastline to inland area is 2.8km at Onpyung-Nansan, Sangdo and Pyungdae areas, and 5.4km at Kosung-Susan area. The mixing ratio between seawater and fresh water by the intrusion of seawater is decreased with the distance toward inland from coastline. This ratio(fresh water : seawater) is 80:20 in spring water adjacent the coastlines, Onpyung area and 99.8:0.2 in the well at No.3 of Susan located at inland away from the coastline. The concentration of $Na^+$ observed at field is 25~45% lower than that theoretically calculated by this mixing ratio. Based on the data of EC, the equipotential line of 500$\mu$mhos/cm is located at 4~5km poing at Kosung-Susan area and 2.5km point at the other area. The equation of correlation between $Cl^-$ concentration and EC values is $Cl^-$=0.1927EC-16.683 for the area lower than 500 $\mu$mhos/cm and $Cl^-$=0.2773EC for the area beyond 500 $\mu$mhos/cm.

  • PDF

Tidal Exchange of Sea Water in Koje Bay (거제만의 해수교환)

  • KIM Jong-Hwa;CHANG Sun-Duck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.2
    • /
    • pp.101-108
    • /
    • 1985
  • The sea water exchange of Koje Bay in the southeastern part of the Korean Peninsula was estimated on the basis of current measurements and oceanographic observation. The exchange ratio was estimated by salinity differences and tidal prism method. The range of exchange ratio at the central part at the entrance of the bay is estimated to be around $26\%$ at spring tide and 5 to $15\%$ at neap tide. The magnitude of exchange ratio, however, can be changed due to water exchange, hydrometeorological and geomorphological conditions. The flushing time deduced by tidal prism was about 48 hours at spring tide and 81 hours at neap tide. Tidal induced eddy motion may play an important role on the seawater exchange in the bay.

  • PDF

Geochemical Analysis and Fates of Pathogenic Indicating Bacteria on Seawater Intrusion in a Sand Box Model (인공 대수층내에서 발생하는 해수침투의 지화학적 분석 및 병원성 지표 미생물의 사멸 특성)

  • Lee, So-Jung;Park, Hun-Ju;Sung, Eun-Hae;So, Myung-Ho;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.4
    • /
    • pp.385-392
    • /
    • 2008
  • In this study, seawater intrusion was assessed employing a kind of biological parameters such as Escherichia coli and Enterococcus faecalis while lab-prepared reclaimed water was recharged to prevent seawater intrusion. Chemical factors indicating seawater intrusion such as Cl$^-$, Ca$^{2+}$, Mg$^{2+}$ and specific conductivity were also simultaneously investigated where an ion exchange between a matrix in artificial aquifer and cations in solution was estimated. Both Escherichia coli and Enterococcus faecalis were shown to be very sensitive against degree of salinity during saline water intrusion. Enterococcus faecalis more strongly resisted against salinity than that of Escherichia coli. The ratio of Enterococcus faecalis divided by E. coli in the process of seawater intrusion increased up to more than 50$\sim$100 times in 18 hours whereas E. coli was died off more than 90% during pumping and recharge rate kept at 10 mL/min. However, when the rates of both recharge and pumping was kept at 5 mL/min, Enterococcus faecalis / Escherichia coli was sustained in the range of 2.5$\sim$5.0, while Escherichia coli showed dimished death rate. Chemical factors such as Cl$^-$, Ca$^{2+}$, Mg$^{2+}$ and specific conductivity showed more than 0.9 of high correlation each other well explaining the degree of seawater intrusion. The degree of ion exchange between artificial aquifer and saline water can be efficiently interpreted by both minus $\Delta$Na, $\Delta$Mg variation and positive $\Delta$Ca variation.

A Study on Analysis of Freshwater-saltwater Interface in the Aquifer around Hwajinpo Lagoon on the Eastern Coast of Korea (동해안 화진포 석호 주변 대수층 내 담수-염수 경계면 분석에 관한 연구)

  • Kim, Minji;Kim, Dongjin;Jun, Seong-Chun;Lee, Jeonghoon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.699-707
    • /
    • 2021
  • Hwajinpo Lagoon, located on the eastern coast of Korea, is a unique environment where freshwater and saltwater are mixed. Systematic management of the lagoon is required because it is a biodiversity-rich and area of high conservation value. The existing environment of the lagoon was evaluated by identifying the distribution of the groundwater level and groundwater flow characteristics. In addition, hydrogeochemical fluctuations were analyzed to determine the effect of seawater intrusion into the aquifer. The results demonstrate that the freshwater-saltwater interface is distributed throughout the aquifer and rises when water of the lagoon evaporates due to prolonged periods of low rainfall and high temperature, thereby increasing the possibility of seawater inflow through groundwater. As for the ionic delta properties (difference between the measured and theoretical concentration of mixed waters), it was estimated that the cation-exchange and precipitation reactions occurred in the aquifer due to seawater intrusion. The ratio of seawater mixed at each point was calculated, using oxygen isotopes and chloride as tracers, resulting in an average of 0.3 and a maximum of 0.87. The overall seawater mixing ratio appears to be distributed according to the distance from the coast. However, some of the results were deviated from the theoretical expectations and reflected the characteristics of the nearby aquifers. Further research on seasonal changes and simulation of seawater intrusion mechanisms is required for specific analysis.

An Experimental Study on the Sea Water Flow in Bay (만내의 해수유동에 관한 실험적 연구)

  • 김미금;김창제
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.03a
    • /
    • pp.205-218
    • /
    • 2002
  • Recently, the water pollution of coastal sea area including harbor, bay and inland sea has been very serious and it causes various environmental impacts. In this study, water flow system of Danghang Bay, which has the narrow and long topographical characteristics with the narrow bay mouth and its flow is influenced principally by the tidal current, is investigated experimentally and numerically. In order to understand the tidal system of Danghang Bay, harmonic analysis is performed based on measured tidal range and flow velocity In addition, numerical model for tidal exchange is developed considering conditions of Danghang Ray. Calculated results show good agreement with measurements. Lastly. based on the proposed numerical model, exchange ratio of seawater volume in Danghang Bay is predicted.

  • PDF