• Title/Summary/Keyword: seawater environment

Search Result 768, Processing Time 0.024 seconds

Assessment on the Seawater Attack Resistance of Antiwashout Underwater Concrete (수중불분리성 콘크리트의 해수침식에 대한저항성 평가)

  • 문한영;김성수;안태송;이승태;김종필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.683-688
    • /
    • 2001
  • In case of constructing the concrete structures under seawater environment, the concrete suffers from deterioration due to penetration of various ions such as chloride, sulfate and magnesium in seawater. Tn the present study, Immersion tests with artificial seawater were carried out to investigate the resistance to seawater attack of antiwashout underwater concrete. From the results of compressive strength, it was found that blended cement concrete due to mineral admixtures such as fly ash(FA) and ground granulated blast-furnace slag(SGC), were superior to ordinary portland cement concrete with respect to the resistance to seawater attack. Moreover, XRD analysis indicated that the formed reactants of ordinary portland cement paste by sulfate and magnesium ions led to the deterioration of concrete. As expected, however, the blended cements with FA or SGC have a good resistance to seawater attack. This paper would discuss the mechanism of seawater deterioration and benefical effects of antiwashout underwater concretes with mineral admixtures.

  • PDF

Evaluation of Oil Pollutants Removal in Seawater as Pretreatment Process for Reverse Osmosis Desalination Process (역삼투식 해수담수화의 전처리공정으로서 유분 제거의 평가)

  • ;Okada Mitsumasa
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.05a
    • /
    • pp.205-209
    • /
    • 2003
  • The various pretreatment processes were evaluated for removal of oil pollutants with weathered oil contaminated seawater in a reverse osmosis desalination process. Weathered oil contaminated seawater was made by biodegradation and photooxidation with oil containing seawater. Coagulation, ultrafiltration, advanced oxidation processes and granular activated carbon filtration was used with pretreatment for dissolved organic carbon. Crude oil was removed but. weathered oil contaminated seawater was not removed by biodegradation and coagulation. DOC and E260 was removed with about 20 % and 40 % by membrane filter of cut off molecular weight 500. So, the most of dissolved organic carbon in weathered oil contaminated seawater was revealed that molecular weight was lower than 500. It is difficult to remove DOC in weathered oil contaminated seawater by advanced oxidation processes treatment, but, E260 was removed more high. However, DOC in weathered oil contaminated seawater was easily adsorbed to GAC. It is revealed that DOC was removed by adsorption.

  • PDF

Properties Analysis of Environment Friendly Electrodeposit Films Formed at Various Current Density Conditions in Natural Seawater (천연해수 중 전류밀도 변화에 따라 형성된 환경친화적인 전착 코팅막의 특성 분석)

  • Lee Chan-Sik;Bae Il-Yong;Kim Ki-Joon;Moon Kyung-Man;Lee Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.253-262
    • /
    • 2004
  • Calcareous deposits are the consequence of pH increase of the electrolyte adjacent to metal surface affected by cathodic current in seawater. It obviously has several advantages over conventional coatings, since the calcareous deposit coating is formed from coating (Mg$^{2+}$, $Ca^{2+}$) naturally existing in seawater. In consideration of this respect, environment friendly calcareous deposit films were formed by an electro deposition technique on steel substrates submerged in 48$^{\circ}C$ natural seawater. And the influence of current density, coating time and attachment of steel mesh on composition ratio, structure and morphology of the electrodeposited films were investigated by Scanning Electron Microscopy(SEM), Energy Dispersive Spectroscopy(EDS) and X-Ray Diffractor(XRD), respectively. Accordingly, this study provides a better understanding of the composition between the growth of $Mg(OH)_2$ and $CaCO_3$ during the formation of electro deposit films on steel substrate under cathodically electrodeposition in $48^{\circ}C$ natural seawater. The Mg compositions, in general, are getting decreased regardless of current density but Ca compositions are getting increased as electrodeposition time runs. That is, $Mg(OH)_2$ compounds of brucite structure shaped as flat type is formed at the initial stage of electrodeposition, but CaCO$_3$ compounds of aragonite structure shaped as flower type is formed in large scale. Besides, $Mg(OH)_2$ compounds were much formed at 5 A/$\m^2$ environment condition compared to the 3 A/$\m^2$ and 4 A/$\m^2$ environment conditions. This is because that OH- which was comparatively largely generated at the metal surface is preferably combined with $Mg^{2+}$TEX>.

Distribution of sewage-derived organic matter using fecal sterol in Masan Bay, Korea (마산만의 하수기인 유기물 fecal sterol의 분포)

  • Choi Min-Kyu;Moon Hyo-Bang;Kim Sang-Soo;Lee Yoon
    • Journal of Environmental Science International
    • /
    • v.14 no.5
    • /
    • pp.481-490
    • /
    • 2005
  • Surface sediments and seawater were sampled at Masan and Haengam Bays of Korea, to evaluate contamination by sewage-derived organic matter using fecal sterols, Six stream-water samples into Masan and Haengam Bays were also sampled. Total concentrations of eight sterols (coprostanol, epichloestanol, epicoprostanol, cholesterol, cholestanol, brassicasterol, stigmasterol and $\beta-sitosterol$) were in the range of $1,274\~4,768{\mu}g/g$ dry weight in suspended particulate from the stream-water, $292\~2,244{\mu}g/g$ dry weight in suspended particulate from the seawater and $4.5\~27.2{\mu}g/g$ dry weight in the sediments. Although sterol compositions in sediments, seawater and stream-water were different, cholesterol was the predominant sterol in all samples. The proportion and concentration of coprostanol, a sewage tracer, in stream-water was much higher than those in sediment and seawater. The sterol levels including coprostanol in the sediments and seawater were higher at inner basin than at the outer bay. Some molecular indices and multivariate statistical analysis were used to assess the origin of these sterols and sewage contamination in the study area. The sterol composition patterns in stream-water were mainly associated with contamination by sewage-derived organic matters and those of seawater were associated with the activities of marine-originated organisms. Sterol levels in the sediments were both from the sewage input through stream-water and the marine- originated organisms. This survey suggests that the main source/route of sewage-derived organic matters in Masan Bay is the input of stream-water into the bay.

Electrochemical Corrosion Damage Characteristics of Alumium Alloy and Stainless Steel with Sea Water Concentration (알루미늄 합금 및 스테인리스강의 해수 농도 변화에 따른 전기화학적 부식 손상 특성)

  • Park, Il-Cho;Kim, Young-Bok;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.4
    • /
    • pp.259-265
    • /
    • 2017
  • 5000 series aluminium alloys and austenitic stainless steels have excellent corrosion resistance and sufficient strength, which are widely used as materials for marine equipment and their parts in the marine environment. The corrosion characteristics of materials are important factors for selecting the appropriate material due to fluid component changes in the estuarine and coastal areas where seawater and fresh water are mixed. Therefore, for 5083 Al alloy, STS304 and STS316L widely used in the marine environment, anodic polarization experiments were performed to compare the corrosion damage characteristics of each material by three kinds of solutions of 100 % tap water, 50 % tap water+50 % natural seawater and 100 % natural seawater. As a result of the anodic polarization experiments, aluminum alloy (5083) caused locally corrosion on the surface in the tap water, and corrosion damage occurred all over the surface when the seawater was included. Stainless steels (STS304 and STS316L) presented almost no corrosion damage in tap water, but they grew pitting corrosion damage with increasing seawater concentration. STS316L showed better corrosion resistance than STS304.

The Research on Activation Plan for Seawater Desalination Plant Application in Korea (국내 해수담수화 플랜트 적용 활성화 방안 연구)

  • Sohn, Jinsik;Yang, Jeong-Seok;Park, Jinseo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.2
    • /
    • pp.251-255
    • /
    • 2009
  • Foreign and domestic seawater desalination plant market investigation was performed to analyze the worldwide trend of seawater desalination plant market and to establish the activation plan for seawater desalination plant application. Water demand and seawater desalination related laws and regulations were investigated and analyzed for the activation plan. RO type and large scale plants are popular nowadays however there are only small plants in island region in Korea. There will be about $1 million\;m^3/day$ deficit in 2015 according to the water demand forecasting from Ministry of Environment and Ministry of Land, Transportation, and Maritime Affairs in Korea. Therefore, it is necessary to activate the domestic application of seawater desalination plant to secure stable water resources. To activate the domestic application of seawater desalination plant, first, we need to establish regulations, support system in the water service law for seawater desalination plant. Second, related Ministry should increase the support for the operation and management of seawater desalination plant and suggest the construction of seawater desalination plant for water resources security near seaside region.

Properties Analysis of Environment Friendly Coating Films Formed by Using Electrodeposition Principle on Seawater (해수환경중 전착원리에 의해 형성시킨 환경친화적인 코팅막의 특성 분석)

  • Baek, S.M.;Lee, C.S.;Kim, K.J.;Moon, K.M.;Lee, M.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.196-197
    • /
    • 2005
  • Cathodic protection is one of the successful ways to prevent corrosion of steel structures in marine environments. The unique feature of cathodic protection in seawater is the formation of calcareous deposits on cathodic metal surface. The formation principles of calcareous deposit seawater had been known for a long time. That is, cathodic reduction reactions associated with cathodic protection in seawater generate $OH^-$ at the metal surface in accordance with the formular ; 1/2 $O_2$ + $H_2O$ + $2e^-$ $2OH^-$ and $2H_2O$ + $2e^-$ ${\rightarrow}$ $H_2$ + $2OH^-$. These reactions increase the pH at the metal / seawater interface. The high pH causes precipitation of $Mg(OH)_2$ and $CaCO_3$ in accordance with the formular ; $Mg^{2+}$ + $2(OH)^-$ ${\rightarrow}$ $Mg(OH)_2$ and $Ca^{2+}$ + $HCO_3^-$ + $OH^-$ ${\rightarrow}$ $H_2O$ + $CaCO_3$. These are typically the main compounds in calcareous deposits. It obviously has several advantages compared to the conventional coatings, since the environment-friendly calcareous deposit coating is formed by the elements($Mg^{2+}$, $Ca^{2+}$) naturally present in seawater. In this study, environmental friendly calcareous deposit films were prepared on steel plates by electro plating technic in natural seawater. The influence of current density on composition ratio, structure and morphology of the coated films were investigated by scanning electron microscopy formation process of calcareous deposits films in natural seawater. And we confirmed the properties of all the films can be improved greatly by controlling the material structure and morphology with effective use of the electroplating method in natural seawater.

  • PDF

Marine Environmental Change Due to Waterfront Development

  • Lee, Moon-Ock;Lee, Sam-No
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.1
    • /
    • pp.33-39
    • /
    • 1999
  • A two-dimensional numerical experiment and field observations were conducted to evaluate changes in sea water movement and the water quality environment related to comprehensive projects of waterfront development around Kwangyang Bay on the south coast of Korea. Tidal flow velocities, especially in the western part of the bay, were considerably slower as a result of the development projects. Accordingly, the seawater exchange ratio reduced from 38.7% to 26.3%. The impact of dredging work on the water quality environment was much stronger than expected. Furthermore, after the completion of the industrial parks and container-exclusive wharfs, COD from the waste water treatment plant will be dispersed extensively into the adjacent water at a level of less than 0.1 mg/l for up to 142.5 $\textrm{km}^2$. Therefore, consistent monitoring and management of the water quality environment is strongly recommended.

  • PDF

Effects of Stranded Oil on Seawater Infiltration in a Tidal flat Environment (조간대에 표착한 기름이 해수의 침투에 미치는 영향)

  • Cheong Jo, Cheong
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.1
    • /
    • pp.75-80
    • /
    • 2003
  • Understanding the seawater infiltration into tidal flat sediments is very important, because it is significantly correlated with the supply of dissolved oxygen, nutrients and organic matter to benthic organisms for survival. However oil blocks interstitial spaces of sediments, reduces seawater infiltration and results in the decrease in oxygen, nutrients and other food supply to benthic communities. The penetration depth of the stranded oil into the sediments is one of the most significant information to know the effect of spilled oil on biological communities and to set up a cleaning method. So we initiated this study to quantify the penetration behavior of spilled oil and to evaluate the influence of the penetrated oil on seawater infiltration in tidal flat environment and its ecological implications. The penetration depth of the crude oil into the tidal flat sediments was two times deeper than that of the fuel oil C, and the depth was significantly affected by stranded oil volume. However, the penetration depth of stranded oil was abruptly dropped at first falling tide but not significantly fluctuated after that. Moreover, hydrocarbon concentration showed the highest within the upper 2 cm. Seawater infiltration was decreased in proportion to the stranded oil volume. The seawater infiltration was more affected by the penetrated fuel oil C about 1.7 times than the crude oil, because the interstitial spaces of the top of sediments were more cleared by the fuel oil C. Therefore, quick cleaning actions for penetrated oil will be necessary for recovery of seawater infiltration because the seawater contains oxygen and nutrients necessary for the survival of benthic organisms in tidal flat.

Seawater-driven forward osmosis for direct treatment of municipal wastewater

  • Sun, Yan;Bai, Yang;Tian, Jiayu;Gao, Shanshan;Zhao, Zhiwei;Cui, Fuyi
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.449-462
    • /
    • 2017
  • Direct treatment of municipal wastewater by forward osmosis (FO) process was evaluated in terms of water flux decline, reverse salt diffusion, pollutants rejection and concentration efficiency by using synthetic seawater as the draw solution. It was found that when operating in PRO mode (active layer facing the draw solution), although the FO membrane exhibited higher osmotic water flux, more severe flux decline and reverse salt diffusion was also observed due to the more severe fouling of pollutants in the membrane support layer and accompanied fouling enhanced concentration polarization. In addition, although the water flux decline was shown to be lower for the FO mode (active layer facing the feed solution), irreversible membrane fouling was identified in both PRO and FO modes as the water flux cannot be restored to the initial value by physical flushing, highlighting the necessity of chemical cleaning in long-term operation. During the 7 cycles of filtration conducted in the experiments, the FO membrane exhibited considerably high rejection for TOC, COD, TP and $NH_4{^+}-N$ present in the wastewater. By optimizing the volume ratio of seawater draw solution/wastewater feed solution, a concentration factor of 3.1 and 3.7 was obtained for the FO and PRO modes, respectively. The results demonstrated the validity of the FO process for direct treatment of municipal wastewater by using seawater as the draw solution, while facilitating the subsequent utilization of concentrated wastewater for bioenergy production, which may have special implications for the coastline areas.