• Title/Summary/Keyword: seating discrepancy

Search Result 2, Processing Time 0.018 seconds

A STUDY ON THE PHYSICAL CHARACTERISTICS OF THE THREE COMMONLY USED DIE SPACING MATERIALS (여러 가지 Die spacing material의 물리적 성질에 대한 연구)

  • Moon, Hong-Seok;Kim, Jong-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.5
    • /
    • pp.640-650
    • /
    • 1999
  • As an optimal quality of the restorations, there should be a least amount of seating discrepancy between the casting and abutment teeth. However, high viscosity of the cementing medium and its resulting thickness may prevent complete seating of the restoration. The use of die spacing material provides adequate internal relief for the cementing medium. The purpose of this study is to compare the thickness of three commonly used die spacing materials. Materials and Methods: Stone plates were fabricated and divided into 12 sections to be painted with die spacers. Tru-Fit, Whip-Mix and Belle do St. Claire die spacer which are commonly used in dental practice were tested in this study. Each die spacers were painted layer by layer according to the manufacturer's recommendation. The average thickness of each die spacers were measured with light microscope(${\times}100$) and compared between them. Results and Conclusions. A silver-colored Tru-Fit die spacer has the lowest value of thickness without statistical significance comparing with a gold-colored Tru-Fit die spacer and a gray layer of Whip-Mix die spacer has the highest value of thickness without any statistical significance comparing with Belle de St. Claire die spacer. Three and four layers of Tru-Fit die spacer and two layers of Whip-Mix and Belle de St. Claire die spacers seem to be in the acceptable range of thickness of 25 to $45{\mu}m$ for optimal seating of the restorations. The standard experimental design and method should be fur thor evaluated for more consistent and objective results.

  • PDF

MARGINAL FITNESS OF PORCELAIN-FUSED-TO-METAL CROWN ACCORDING TO MATERIAL AND TECHNIQUE

  • Jeon, Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.1
    • /
    • pp.120-132
    • /
    • 1998
  • This stusy was to investigate the marginal fitness of porcelain-fused-to- metal crown after succesive firing cycle. Main variables were the degree of marginal curvature of labiocervical margin and the type of alloy. The exaggerated marginal curvature(EMC) was created by additional reduction at the faciocervical wall of the normallized marginal curvature (NMC)-typed ivorine tooth by using milling machine. The difference in the shape was the mid facial margin was placed 2mm apical to cemento- enamel junction in labial surface. Three types of alloy were high noble, noble, and base metal alloy. Test specimens were divided into 8 groups and each group had 8 specimens. Sixty four ceramometal crowns were made totally. Measurement stages were following degassing, opaquing. body porcelain firing, and glazing, and measuring sites were 4. (midmesial, midfacial, middistal, and midlingual). Digital, travelling measuring microscope (0.5 um precision, Olympus. Japan) was used under ${\times}250$ magnification. Within the limitation of this investigation, it was concluded as belows: 1. The pattern of marginal distortion was varied. Degassing stage was not a specific, causative stage that induce most of total marginal distortion during whole procedure fabricating a ceramometal crown. Body firing stage induced discrepancy relatively more than other firing stages. 2. The specimens that were Ni-based alloy and had EMC were distorted persistently following successive fabricating procedures. But marginal openings were decreased after glazing. 3. The release of metal grinding-induced stress was presumed as a cause that induce marginal distortion. 4. The amount of discrepancies of the labial and lingual margins were greater than that of the mesial and distal margin in the specimen that had EMC. 5. Silver-plated die was not enough to resist abrasion during repeated seating of metal copings on the die-holding device.

  • PDF