• Title/Summary/Keyword: seasonal succession

Search Result 69, Processing Time 0.023 seconds

Comparison of Spatio-temporal Variations of Phytoplankton Communities in Lakes in the Boseong River Basin (보성강 유역에 위치한 호수에서의 식물플랑크톤의 시공간적 군집 비교 분석)

  • Cho, Hyeon Jin;Na, Jeong Eun;Lee, Hak Young
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.1
    • /
    • pp.11-21
    • /
    • 2020
  • In this study, we compared the spatio-temporal differences of phytoplankton communities among 4 lakes in the Boseong River basin. Field research was conducted quarterly from 2014 to 2017 for this study. A total of 345 species of phytoplankton were identified including 107 Bacillariophyceae, 175 Chlorophyceae, 27 Cyanophyceae and 36 other phytoplankton taxa. Lake Boseong showed higher species numbers and density of phytoplankton than other lakes (Dunn's test, P<0.01). Bacillariophyceae such as Asterionella formosa, Aulacoseira granulata, Fragilaria crotonensis was dominated in most research periods, whereas Scenedesmus ecornis and Coelastrum cambricum belonging to Chlorophyceae were dominant species on August. The self-organizing map (SOM) classified 3 clusters with 10 × 7 grid and showed spatio-temporal variation of phytoplankton communities based on significant difference among each clusters. Total 31 species of phytoplankton were chosen as a indicator species using indicator species analysis(ISA) and reflected seasonal phytoplankton succession and diversity and density of phytoplankton according to nutrient concentration. Water temperature, Secchi depth, conductivity and DO were identified as important factors affecting the differences of phytoplankton communities in the studied lakes in Boseong River basin using non-metric multidimensional scaling (NMDS).

Relations of Nutrient Concentrations on the Seasonality of Algal Community in the Nakdong River, Korea (낙동강 조류군집의 계절적 변화와 영양염 농도와의 관계)

  • Yu, Jae Jeong;Lee, Keung Lak;Lee, Hye Jin;Hwang, Jeong Wha;Lyu, Heuy Seong;Shin, La Young;Park, A Reum;Chen, Se Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.2
    • /
    • pp.110-119
    • /
    • 2015
  • The construction of the eight large weirs in the Nakdong River, the second largest river in Korea, caused big changes in the physical environment of the water system. Algal communities and their correlations with environmental factors, mainly nutrients were studied at five weir areas in the Nakdong River from 2010 to 2013. Water quality, hydrodynamics and algal composition were investigated. Results showed that flow velocities were reduced compared with that before weir construction near the areas where are located in the mid and upstreams of the Nakdong River. A seasonal algal community succession was observed and it was mainly correlated with temperature and phosphorus. Diatoms were dominated from winter to spring months and massive diatomic blooms of Stephanodiscus sp. occurred early in March during survey period. Cyanobacterial blooms of Microcystis sp. occurred from July to September 2013 and was preceded by the lower total phosphorus concentration of $0.05mg\;L^{-1}$. The correlations between total phosphorus concentrations and algal abundances were not significant during the survey periods. However, significant correlation with cyanobacteria was found in the period of weir construction after only at the GG survey site and blooms periods of 7 times in the survey sites, and its correlation coefficients were 0.53 (p<0.001) and 0.42 (p<0.01) respectively. When algal bloom was observed, partially low nutrient concentration was observed in the Nakdong River. In conclusion, partially low nutrient concentration which may result from algal bloom was observed, and we presume it caused the reduction of algal abundunces.

Formation and Evolution of Turbidity Maximum in thd Keum Estuary, West Coast of Korea (금강 하구에서의 최대혼탁수 형성 및 변화에 대한 연구)

  • 이창복;김태인
    • 한국해양학회지
    • /
    • v.22 no.2
    • /
    • pp.105-118
    • /
    • 1987
  • A series of anchor stations were occupied along the Keum EAstuary during six different periods of tidal and fluvial regimes. The results clearly show that the formation and evolution of the turbidity maximum play an important role in the sedimentary processes in this environment. The turbidity maximum in the Keum Estuary is primarily related to the tidal range at the mouth and is caused by the resuspension of bottom sediments. In this estuary, the turbidity maximum is not a permanent feature and shows semidiurnal, fortnightly and seasonal variations. Repetition of deposition and resuspension of fine sediments occur in response to the variation in current velocity associated with semidiurnal tidal cycles. The core of turbidity maximum shifts landward or seaward accordion to the flood-ebb succession. The turbidity maximum also shows a fortnightly variation in response to the spring-neap cycles. Thus, the turbidity maximum degenerates during neap-tide and regenerates during spring-tide. The freshwater discharge is also an important factor in the formation and destruction of the turbidity maximum. The increase in freshwater discharge in rainy season can create an ebb-dominant current pattern which enhances the seaward transport of suspended sediments, resulting in the shortening of residence time of suspended materials in the estuary. Thus, under this high discharge condition, the turbidity maximum exists only during spring-tide and starts to disappear as the tidal amplitude decreases.

  • PDF

Dynamics of Phytoplankton and Zooplankton of a Shallow Eutrophic Lake (lake llgam) (수심이 얕은 부영양 인공호(일감호)의 동 ${\cdot}$ 식물플랑크톤 동태학)

  • Kim, Ho-Sub;Park, Je-Chul;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.286-294
    • /
    • 2003
  • This study was attempted to understand seasonal dynamics of phyto- and zooplankton communities in shallow, eutrophic Lake llgam and to compare them with the PEG (Plankton Ecology Group) model. Seasonal succession pattern of phytoplankton community was similar to PEG model as Chlorophyceae and Baciliphyceae increase during spring and autumn fellowed by increase of Cyanophyceae. However, based on the cell density and biomass, a dominant phytoplankton community differed with PEG model: Cyanophyceae had been a dominant community throughout a year, except for ice-cover period during which Chlorophyceae was a dominant group. In spring, when ice melted and dissolved nutrients in water column increased, the increase of Chlorophyceae occurred: when nutrients (DIN and DIP) rapidly decreased, Cyanophyceae increase occurred. Microcystis, Oscillatoria, Lyngbya, Merismopedia were maior dominant species of Cyanophyceae and their cell density and/or biomass was the highest in October 2000 (12.9${\pm}$5.8${\times}10^5$ cells/ml, 3.5${\pm}$0.9${\times}10^3{\mu}gC/l$). Cyanophyceae biomass showed positive relationship with chlorophyll a ($r^2$ = 0.71,P< 0.001) and TP concentration ($r^2$ = 0.62, P< 0.001). Small-sized rotifers such as Keratella cochlearis, increased between March and May when Chlorophyceae increased. Both high standing crop of copepods and cladocerans, such as Diaphanosoma brachyrum and Bosmina longirostris occurred between June and September accompanied with the increase of Dinophyceae and Bacillariophyceae. There was no evidence that clear-water phase was caused by zooplankton grazing. The diversity and evenness index of phyto- and/or zooplankton increased with chlorophyll a concentration. These results suggest zooplankton grazing and limiting nutrient deficiency could lead to change of phytoplankton biomass, but not the phytoplankton community in Lake llgam.

Bloom-forming Cyanobacteria in Yongdam Lake (1) Nutrient limitation in a Laboratory Strain of a Nitrogen-fixing Cyanobacterium, Anabaena spiroides v. crassa (용담호 녹조현상의 원인 남세균 연구 (1) 질소고정 남세균 Anabaena spiroides v. crassa 종주와 영양염 제한)

  • Park, Jong-Woo;Kim, Young-Geel;Heo, Woo-Myung;Kim, Bom-Chul;Yih, Won-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.11 no.4
    • /
    • pp.158-164
    • /
    • 2006
  • Yongdam Lake is the fifth largest artificial lake in Korea newly formed by the first impounding the Yongdam Multi-purpose Dam on December, 2002. Yongdam Lake, with her total water storage of 820 million M/T, is located at the roof-top region of the streams flowing into the just-constructed new Saemankeum Lake. Seasonal succession of phytoplakton in Yongdam Lake might affect cyanobacterial blooms in Saemankeum Lake by inoculating seasonal dominants. During 2002-2003 when the first impounding after the construction of Yongdam Multi-purpose Dam was still undergoing, summer cyanobacterial blooms by Anabaena, Microcystis, and Aphanizomenon were observed. Among these three, filamentous Anabaena is well known to have its species with $N_2-fixing$ ability and special cells such as heterocysts and akinetes as well as the vegetative cells. We established a clonal culture of Anabaena spiroides v. crasse (KNU-YD0310) from the live water samples collected at the bloom site of Yongdam Lake. The N- and P-nutrient requirement of the KNU-YD0310 was explored by the experimental cultivation of the laboratory strain. Ratio of heterocysts to vegetative cells increased as N-deficiency extended with its maximum at $N_2-fixing$ condition. The strain KNU-YD0310 exhibited considerable growth under N-limiting conditions while its growth was proportional to the initial phosphate-P concentration under P-deficient conditions. Under P-limiting conditions akinete density increased, which could be interpreted as an adaptation strategy to survive severe environment by transforming into resting stage. The above eco-physiological characteristics of Anabaena spiroides v. crassa might be useful as an ecological criterion in controlling cyanobacterial blooms at Shaemankeum Lake in near future.

The Limnological Survey of Major Lakes in Korea (4): Lake Juam (국내 주요 호수의 육수학적 조사(4) : 주암호)

  • Kim, Bom-Chul;Heo, Woo-Myung;Lim, Byung-Jin;Hwang, Gil-Son;Choi, Kwang-Soon;Choi, Jong-Soo;Park, Ju-Hyun
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.1 s.93
    • /
    • pp.30-44
    • /
    • 2001
  • In this study limnological characteristics of Lake Juam was surveyed from June 1993 to May 1994 in order to provides important information regarding water resources. Secchi disc transparency, epilimnetic chlorophyll a (chi-a), total nitrogen (TN), total phosphorus (TP) concentration and primary productivity were in the range of $2.0{\sim}4.5\;m$, $0.9{\sim}13.6\;mgChl/m^3$, 0.78$\{sim}$2.32 mgN/l, $11{\sim}56\;mgP/m^3$, $270{\sim}2.160\;mgCm^{-2}\;day^{-1}$, respectively. On the basis of TP, Chl-a and Secchi disc depth, the trophic state of Lake Juam can be classied as mesotrophic lake. The phosphorus inputs from non-point sources are concentrated in heavy rain episodes during the monsoon season. As a result, phosphorus concentration are higher in summer than in winter. TP loading from the watershed were estimated to be $0.9\;gPm^{-2}yr^{-1}$, which correspond to a boundary of the critical loading ($1.0\;gPm^{-2}yr^{-1}$) for eutrophication. From the results of the algal assay, both phosphous and nitrogen act as limiting nutrients in algal growth. The seasonal succession of phytoplankton community structure in Lake Juam was similar to that observed in other temperate lakes. Diatoms (Asterionella formosa and Aulacoseira granulate var. angustissima)fujacofeira BraHuJafa uar. aHgusHrsiaia) weredominant in spring and winter, cyanobacteria) were dominant in warm season. The organic carbon, nitrogen and phosphorus content of lake sediment were $9.5{\sim}14.0\;mgC/g$, $1.01{\sim}1.82\;mgN/g$ and $0.51{\sim}0.65\;mgP/g$, respectively. The allochthonous organic carbon loading from the watershed and autochthonous organic carbon loading by primary production of phytoplankton were determined to be 1,122 tC/yr and 6,718 tC/yr, respectively. To prevent eutrophication of Lake Juam, nutrient management of watershed should be focus on reduction of fertilizer application, proper treatment of manure, and conservation of topsoil as well as point source.

  • PDF

The Limnological Survey of a Coastal Lagoon in Korea (3): Lake Hwajinpo (동해안 석호의 육수학적 조사 (3): 화진포호)

  • Kwon, Sang-Yong;Lee, Jae-Il;Kim, Dong-Jin;Kim, Bom-Chul;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.12-25
    • /
    • 2004
  • Physicochemical parameters, plankton biomass, and sediment were surveyed from 1998 to 2000 at two months interval in a eutrophic coastal lagoon(Lake Hwajinpo, Korea). The lake is separated from the sea by a narrow sand dune. Littoral zone is well vegetated with leafing-leaved aquatic plants. The lake basin is divided into two subbasins by a shallow sill. It has intrusion of seawater by permeation and stormy waves. Stable chemoclines are formed by salinity difference at 1m depth all the year round. DO was often very low (< 1 mg$O_2\;L^{-1}$) at hypolimnion. Temperature inversions were observed in November. Nitrate and ammonium concentrations were very low(< (1.1 mgN $L^{-1}$), even though TN was usually 2.0 ${\sim}$ 3.5 mgN $L^{-1}$. TN/TP was generally lower than the Redfield ratio. Transparency was 0.2 ${\sim}$ 1.7 m, and COD, TP, and TN of sediment were 3.1 ${\sim}$ 40.3 mg$O_2\;g^{-1}$, 0.91 ${\sim}$ 1.39 mgP $g^{-1}$, and 0.34 ${\sim}$ 3.07 mgN $g^{-1}$, respectively. Phytoplankton chlorophyll- a concentrations were mostly over 40 mg $m^{-3}$. Two basins showed different phytoplankton communities with Oscillatoria so., Trachelomonas sp., Schizochlamys gelatinosa, and Anabaena spiroides dominant in South basin, and with Trachelomons sp., Schroederia so., schizochlamys gelatinosa, and Trachelomonas sp. dominant in the North basin. The seasonal succession of phytoplankton was very fast, possibly due to sudden changes in physical conditions, such as wind, turbidity, salinity and light.

Water Quality and Structure of Aquatic Ecosystem in Water Source, Lake Gachang (상수원 호소인 가창호의 수질과 수생태계의 계절적 변화)

  • Park, Yeon-Jeong;Lee, Hae-Jin;Seo, Jung-Kwan;Tak, Bo-Mi;Jeong, Hyun-Gi;Lee, Jae-Kwan
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.4
    • /
    • pp.296-304
    • /
    • 2011
  • This study was carried out to investigate the relation between water quality and structure of the aquatic ecosystem in the Lake Gachang from February to December in 2010. The annual mean COD (Chemical Oxygen Demand) in Lake Gachang was 3.5 mg $L^{-1}$, indicating, level II of environmental standards and the trophic state was mesotrophic. The seasonal succession of phytoplankton showed that Bacillariophyceae was mostly dominant species throughout the year except August. In case of zooplankton, rotifers dominate in the most seasons, but copepod (Nauplii) in August. The macrophyte plants showed diverse species composition consisted of 9 varieties, 77 species, 64 genera, 34 families and 24 orders. Surveyed species of macroinvertebrates were classified into 1 phyla, 2 classes, 4 orders, 7 families, 9 species. The macroinvertebrates showed FFG (Functional Feeding Groups) such as GC (Gathering-Collector) and SH (Shedder). A total of 42 species of fish was collected including $Zacco$ $koreanus$ and $Coreoperca$ $herzi$. In this study, we investigated environmental factors including pollutant source, load, water quality and distribution characteristics of biota such as phytoplankton, zooplankton, macrophyte plants, macroinvertebrates, fish.

Spatial and Temporal Distribution of Zooplankton Communities in Lake Paldang (팔당호 동물플랑크톤 군집의 시공간적 분포)

  • Sim, Youn-Bo;Jeong, Hyun-Gi;Im, Jong-Kwon;Youn, Seok-Jea;Byun, Myeong-Seop;Yoo, Soon-Ju
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.4
    • /
    • pp.287-298
    • /
    • 2018
  • The zooplankton community and environmental factor were investigated on a weekly basis from March to November 2015 in Lake Paldang, Korea. The seasonal succession of zooplankton community structure was influenced by hydraulic and hydrological factors such as inflow, outflow and rainfall. However, the hydraulic retention time in 2015 (16.3 day) was affected by the periods of water shortage that had continued since 2014 and increased substantially compared to 2013 (7.3 day). Therefore, the inflow and outflow discharge were decreased, and the water quality (COD, BOD, TOC, TP, Chl-a) of Lake Paldang (St.1) was the same characteristics as the river type Bukhan river (St.3), compared with the lake type Namhan river (St.2) and Gyeongan stream (St.4). Zooplankton community dominated by rotifers (Keratella cochlearis, Synchaeta oblonga) in spring (March to May). However, Copepod (Nauplius) and Cladoceran (Bosmina longirostris) dominated in St.4. In summer (June to August), there was a few strong rainfall event and the highest number of individuals dominated by Keratella cochlearis (Rotifera) and Difflugia corona (Protozoa) were shown during the study period. In autumn (October to November), the water temperature was decreased with decrease in the total number of individuals showing Nauplius (Copepoda) as the dominant species. As a result of the statistical analysis about zooplankton variation in environmental factors, the continuous periods of water shortage increased the hydraulic retention time and showed different characteristic for each site. St.1, St.3 and St.2, St.4 are shown in the same group (p<0.05), showing the each characteristics of river type and lake type. Therefore, the water quality of catchment area and distribution of zooplankton community would be attributed to hydraulic and hydrological factors.