• Title/Summary/Keyword: seasonal radon variation

Search Result 16, Processing Time 0.022 seconds

Radon and thoron concentrations inside ancient Egyptian tombs at Saqqara region: Time-resolved and seasonal variation measurements

  • Salama, E.;Ehab, M.;Ruhm, W.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.950-956
    • /
    • 2018
  • For complete assessment of inhalation doses of radon and its progeny inside the three main ancient Egyptian tombs in Saqqara, seasonal radon concentrations have been measured by using a new electronic device that allows for measurement of real-time-resolved radon concentrations. Measurements were complemented by very fast measurements of thoron concentrations, which turned out to be low. Based on these measurements, annual residence time inside these tombs and the newest International Commission on Radiological Protection-recommended radon dose conversion coefficients or seasonal effective doses were calculated. The results indicate that workers receive highest annual effective doses of up to 140 mSv, which exceeds the annual limit of 20 mSv, whereas lower values up to 15 mSv are received by guides. In contrast, much lower doses were obtained for one-time visitors of the investigated tombs. The obtained results are somewhat different but still consistent with those previously obtained by means of fixed passive dose meters at some of the investigated places. This indicates that reasonable estimates of the effective dose of radon can be also obtained from short-term radon measurements carried out only twice a year (summer and winter season). Increasing the ventilation, minimizing the working times, etc., are highly recommended to reduce the annual effective dose.

An Analysis of Anomalous Radon Variation Caused by M5.8 Gyeong-ju Earthquake (규모 5.8 경주 지진에 의한 토양 내 라돈농도의 이상변화 분석)

  • Kim, Jin-seop;Kim, Minjun;Kim, Sunwoong;Lee, Hyomin
    • Economic and Environmental Geology
    • /
    • v.51 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • The radon concentration in soil varies with environmental factors such as atmospheric temperature and pressure, rainfall and soil temperature. The effects of these factors, therefore, should be differentiate in order to analyzed the anomalous radon variation caused by earthquake events. For these reasons, a comparative analysis between the radon variations with environmental factors and the anomalous variations caused by Gyeong-ju earthquake occurred in September 12, 2016 has been conducted. Radon concentration in soil and environmental factors were continuously measured at a monitoring ste located in 58Km away from earthquake epicenter from January 01, 2014 to May 31, 2017. The co-relationships between radon concentration and environmental factors were analyzed. The seasonal average radon concentration(n) and the standard variation(${\rho}$) was calculated, and the regions of ${\pm}1{\rho}$ and ${\pm}2{\rho}$ deviations from seasonal average concentration were investigated to find the anomalous radon variation related to Gyeong-ju earthquake. Earthquake effectiveness and q-factor were also calculated. The radon concentration indicated the seasonal variation pattern, showing high in summer and low in winter. It increases with increasing air temperature and soil temperature, and has the positive co-relationships of $R^2=0.9136$ and $R^2=0.8496$, respectively. The radon concentration decreases with increasing atmospheric pressure, and has the negative co-relationships of $R^2=0.7825$. Four regions of ${\pm}2{\rho}$ deviation from average seasonal concentration (A1: 7/3~7/5, A2: 7/18, A3: 8/4~8/5, A4: 10/17~10/20) were detected before and after Gyeong-ju earthquake. A1, A2, A3 were determined as the anomalous radon variation caused by the earthquake from co-relationship analyses with environmental factors, earthquake effectiveness and q-factor. During the period of anomalous radon variation, correlation coefficients between radon concentration and environmental factors were significantly lowered compared to other periods such as air temperature ($R^2=0.2314$), soil temperature ($R^2=0.1138$) and atmospheric pressure ($R^2=0.0475$). Annual average radon concentration was also highest at 2016, the year of Gyeong-ju earthquake.

Seasonal Radon Concentration and Correlation Analysis of Indoor Radon Originated from Soil and Soil Radon at Detached House (계절적 라돈농도 변화 및 토양기원 실내라돈과 토양내 라돈농도의 상관성 분석 -단독주택 사례연구-)

  • Cho, Ju-Hyun;Kim, Younghee
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.5
    • /
    • pp.105-111
    • /
    • 2017
  • In this study, the variation of indoor and soil radon concentrations were measured at a test bed (detached house), and correlation analysis was performed using linear regression. The results showed that the average concentration of indoor radon was increased by about 20% when the heater was operated in the house, but it was decreased by 15% when the ventilation system was on. In the changes of seasonal radon concentrations, soil and indoor radon concentrations in winter were higher than in summer. Statistical analysis showed a weak correlation between the soil radon and indoor radon, but the correlation (R=0.852, $R^2=0.726$) was relatively high at exhaust condition in the winter. It is difficult to extrapolate the results of the study to the general cases because radon distribution is highly site-specific, but the result of this study could be used as a reference for radon management and reduction of detached house in the future investigations.

Comparison of Indoor Radon Concentrations in Areas of Jeollabuk-do Province (전라북도 일부지역의 라돈 농도 비교 연구)

  • Yoo, Juhee;Lee, Kyusun;Seo, Sooyun;Kim, Seonhong;Lee, Jeongsub
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.6
    • /
    • pp.658-667
    • /
    • 2019
  • Objective: This study was designed to compare construction types and seasonal radon concentrations in dwellings in Jeollabuk-do Province in Korea. Methods: The measurement of indoor radon concentrations in 79 dwellings using alpha-track detectors was performed every three months (seasonally) over one year between 2015 and 2016. Also, Radon concentrations in soil were measured in spring to investigate the correlations between the concentrations in soil and indoor air. Results: The annual average concentration of indoor radon for dwellings was 89.7±72.1(GM: 72.4) Bq/㎥, with a range (min-max) of 17.2 to 505.4 Bq/㎥. The highest indoor radon concentration was measured in winter and the lowest was shown in summer. The geometric mean of radon concentration in winter was 1.03-2.58 times higher than other seasons. Radon concentrations in soil were investigated at the depth of 1 m, and the concentrations ranged from 1,780 Bq/㎥ to 123,264 Bq/㎥. This showed low correlations with indoor radon concentrations.

Concentration Distributions and A Reduction Strategy of Airborne Radon in Seoul Metropolitan Subway Stations (서울시 지하철역내의 라돈 농도분포 및 저감대책)

  • 김동술;김윤신;김신도;신응배;김성천;유정석
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.4
    • /
    • pp.271-277
    • /
    • 1993
  • Indoor radon has been known as one of the notorious carcinogens. However, a safe environmental criterion of radon has not yet been established in Korea, The main objectives of this study were to study concentration distributions of radon, to trace radon sources in subways, and to obtain a strategy for radon reduction in Seoul metropolitan area. Radon concentrations had been extensively determined by several steps. The first step was to survey radon levels in all of 83 subway stations from October to November in 1991. The second step was to select 40 out of 83 stations and then to study seasonal variations in 1991 and 1992. The third step was to monitor radon levels by hourly-basis plans. The fourth step was to seek a radon reduction strategy by altering ventilation at Ankuk station where had the highest radon concentration during the first measurement step. Each underground floor in the station was divided into 10 sites to measure hourly radon variations. The final step of the study was to measure radon concentrations in groundwater that is one of the possible main sources radon place. The result of the various measuring approaches showed short-and long-term radon variation and indicated radon reduction schemes.

  • PDF

Concentration Variation of Atmospheric Radon and Gaseous Pollutants Related to the Airflow Transport Pathways during 2010~2015 (대기 라돈 및 기체상 오염물질의 기류 이동경로별 농도변화: 2010~2015년 측정)

  • Song, Jung-Min;Kim, Ki-Ju;Bu, Jun-Oh;Kim, Won-Hyung;Kang, Chang-Hee;Chambers, S.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.2
    • /
    • pp.321-330
    • /
    • 2018
  • Concentrations of the atmospheric radon and gaseous pollutants were measured at the Gosan site on Jeju Island from 2010 to 2015, in order to observe their time-series variation characteristics and examine the concentration change related to the airflow transport pathways. Based on the realtime monitoring of the atmospheric radon and gaseous pollutants, the daily mean concentrations of radon ($^{222}Rn$) and gaseous pollutants($SO_2$, CO, $O_3$, $NO_x$) were $2,400mBq\;m^{-3}$ and 1.3, 377.6, 41.1, 3.9 ppb, respectively. On monthly variations of radon, the mean concentration in October was the highest as $3,033mBq\;m^{-3}$, almost twice as that in July ($1,452mBq\;m^{-3}$). The diurnal variation of radon concentration shows bimodal curves at early morning (around 7 a.m.) and near midnight, whereas its lowest concentration was recorded at around 3 p.m. Several gaseous pollutants($SO_2$, CO, $NO_x$) showed a similar seasonal variation with radon concentration as high in winter and low in summer, whereas the $O_3$ concentrations had a bit different seasonal trend. According to the cluster back trajectory analysis, the frequencies of airflow pathways moving from continental North China, East China, Japan and the East Sea, the Korean Peninsula, and North Pacific Ocean routes were 36, 37, 10, 13, and 4%, respectively. When the airflow were moved to Jeju Island from continental China, the concentrations of radon and gaseous pollutants were relatively high. On the other hand, when the airflows were moved from North Pacific Ocean and East Sea, their concentrations were much lower than those from continental China.

Time Series Observations of Atmospheric Radon Concentration in Seoul, Korea for an Analysis of Long-Range Transportation of Air Pollutants in the North-East Asia (동북아 오염물질 장거리이동 분석을 위한 서울시 대기 중 라돈농도의 시계열적 특성에 관한 연구)

  • Kim, Yoon-Shin;Lee, Cheol-Min;Kim, Ki-Youn;Jeon, Hyung-Jin;Kim, Jong-Cheol;Iida, Takao
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.4
    • /
    • pp.283-292
    • /
    • 2007
  • Atmospheric concentrations of radon had been continuously observed in Seoul, Korea since December 1999, as a tracer for long-range transport of air pollutants from China continent to Korea. In order to study radon as a tracer of long-range transport, it is important to know information about the atmospheric distribution and variation of radon concentration and its time variation. Atmospheric radon concentration are measured with electrostatic radon monitor(ERM) at Hanyang University located in Eastern area of Seoul. Air sample is taken into a vessel of ERM, and alpha particles emitted by radon daughters $Po^{218}$ are detected with ZnS(Ag) scintillation counter. Hourly mean concentrations and hourly alpha counts are recorded automatically. The major results obtained from time series observation of atmospheric radon were as follows : (1) The mean of airborne radon concentration in Seoul was found to be $7.62{\pm}4.11\;Bq/m^3$ during December $1999{\sim}January$ 2002. (2) The hourly variation of radon concentrations showed the highest in 8:00AM ($8.66{\pm}4.22\;Bq/m^3$) and the lowest in 3:00AM ($6.62{\pm}3.70\;Bq/m^3$) and 5:00AM ($6.62{\pm}3.39\;Bq/m^3$). (3) the seasonal variation of radon concentrations showed higher during winter-to-fall and lower during summer-to-spring. (4) Correlation between airborne radon concentration and the meteorological factors were -0.21 for temperature, 0.09 for humidity, -0.20 for wind speed, and 0.04 for pressure. (5) The mean difference of airborne radon concentration between Asian dust ($5.36{\pm}1.28\;Bq/m^3$) and non-Asian dust ($4.95{\pm}1.49\;Bq/m^3$) phenomenon was significant (p=0.08). We could identify time series distribution of radon concentration related meteorological factors. In addition, radon can be considered a good natural tracer of vertical dispersion and long-range transport.

Long-term Variation of Radon in Granitic Residual Soil at Mt. Guemjeong in Busan, Korea (화강암 잔류 토양의 토양 가스 중 라돈의 장기적 변화 특성)

  • Moon, Ki-Hoon;Kim, Jin-Seop;Ahn, Jung-Keun;Kim, Hyun-Chul;Lee, Hyo-Min
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.279-291
    • /
    • 2009
  • Radon is a natural radionuclide originated from radioactive decay of radium in rocks and soil. It is colorless, odorless and tasteless elements that mainly distributed as gaseous phase in soil pore space. The present study analyzed the characteristics of long-term radon variation in granitic residual soil at Mt. Guemjeong in Guemjeong-gu, Busan and determined the effects of atmospheric temperature, rainfall and soil temperature and moisture. Periodic measurements of radon concentrations in soil gas were conducted by applying two types of in-situ monitoring methods (chamber system and tubing system). Radon concentration in soil gas was highest in summer and lowest in winter. The variations in soil temperature and atmospheric temperature were most effective factors in the long-term radon variations and showed positive co-relations. The air circulation between soil air and atmosphere by the temperature difference between soil and atmosphere was analyzed a major cause of the variation. However, other factors such as atmospheric pressure, rainfall and soil moisture were analyzed relatively less effective.

Diurnal and Seasonal Variations of the Radon Progeny Concentrations in the open Atmosphere and the Influence of Meteorological Parameters (대기중 라돈자핵종 농도의 일일 및 계절적 변화와 기상인자가 미치는 영향)

  • Lee, Dong-Myung;Kim, Chang-Kyu;Rho, Byung-Hwan;Lee, Seung-Chan;Kang, Hee-Dong
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.4
    • /
    • pp.207-216
    • /
    • 2000
  • Continuous measurements of radon progeny concentrations in the open atmosphere and measurements of meteorological parameters were performed in Tajeon, using a continuous gross alpha/beta aerosol monitor and a weather measuring equipment between July 1999 and July 2000. These data were analyzed for half-hourly, daily, and seasonal variations. The distribution of daily averaged equilibrium equivalent radon concentration$(EEC_{Rn})$ had an arithmetic mean value of $11.3{\pm}5.86Bqm^{-3}$ with the coefficient of variation of about 50% and the geometric mean was $10.3Bqm^{-3}$. The $EEC_{Rn}$ varies between 0.83 and $43.3Bqm^{-3}$, depending on time of day and weather conditions. Half-hourly averaged data indicated a diurnal pattern with the outdoor $EEC_{Rn}$ reaching a maximum at sunrise and a minimum at sunset. The pattern of the seasonal variation of the $EEC_{Rn}$ in Taejon had a tendency of minimum concentration occurring in the summer(July) and maximum concentration occurring in the late autumn(November). But the seasonal variation of the $EEC_{Rn}$ is expect to vary greatly from place to place. The outdoor $EEC_{Rn}$ was highly dependent on the local climate features. Particularly the $EEC_{Rn}$an rapidly drops less than $5Bqm^{-3}$ in case of blowing heavily higher than wind speed of $6msec^{-1}$, reversely the days with more than $30Bqm^{-3}$ were at a calm weather condition with the wind speed of lower than $1msec^{-1}$.

  • PDF

Characteristics of Radon Variability in Soils at Busan Area (부산광역시 일대의 토양 내 라돈 농도 변화 특성)

  • Kim, Jin-Seop;Kim, Sun-Woong;Lee, Hyo-Min;Choi, Jeong-Yun;Moon, Ki-Hoon
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.277-294
    • /
    • 2012
  • The characteristics of temporal spacial radon variation in soil according to parent rock type and affecting factors were studied in Busan, Korea. The concentration of $^{222}Rn$ in soils and their parent elements ($^{226}Ra$,$^{228}Ra$, U and Th) in rocks and soils were measured at 24 sites in Busan area. The distribution and transportation behavior of these parent elements were analyzed and their correlations to radon concentration in soil were determined. Topographic effects were also evaluated. Two in-situ radon measurement (soil probe and buried tube) methods were applied to measure radon concentration in soil and their accuracies were evaluated. The spatial variation of radon in soil generally reflected U concentration in the parent rock. Average radon concentrations were higher in plutonic rocks than in volcanic rocks and were decreased in the order of felsic>intermediate>mafic rock. However, the radon concentrations were significantly varied in soils developed from same parent rocks due to the disequilibrium of U and $^{226}Ra$ between rock and soil. As results, the correlation of these element concentrations between rocks and soils was very low and radon concentrations in soils had highly co-related to the concentrations of these elements in soils. Th and $^{228}Ra$ show complex enrichment characteristics, differing significantly with U, in soils developed from same parent rock because the geochemical behavior of these elements during weathering and soil developing process was different with U. The radon concentrations in the same depth of soil in slope area were also different according to positions. The radon concentrations in soils developed from same parent rocks (19 sites at Pusan National University) varied 6.8~29.8Bq/L range because of small scale topographic variation. The opposite seasonal variation pattern of radon were observed according to soil properties. It was determined that buried tube method is more accurate method than soil probe method and was very advantageous application for the analysis for the characteristics of temporal spacial radon variation in soil.