• Title/Summary/Keyword: seasonal forecasts

Search Result 80, Processing Time 0.033 seconds

Probabilistic Forecasting of Seasonal Inflow to Reservoir (계절별 저수지 유입량의 확률예측)

  • Kang, Jaewon
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.965-977
    • /
    • 2013
  • Reliable long-term streamflow forecasting is invaluable for water resource planning and management which allocates water supply according to the demand of water users. It is necessary to get probabilistic forecasts to establish risk-based reservoir operation policies. Probabilistic forecasts may be useful for the users who assess and manage risks according to decision-making responding forecasting results. Probabilistic forecasting of seasonal inflow to Andong dam is performed and assessed using selected predictors from sea surface temperature and 500 hPa geopotential height data. Categorical probability forecast by Piechota's method and logistic regression analysis, and probability forecast by conditional probability density function are used to forecast seasonal inflow. Kernel density function is used in categorical probability forecast by Piechota's method and probability forecast by conditional probability density function. The results of categorical probability forecasts are assessed by Brier skill score. The assessment reveals that the categorical probability forecasts are better than the reference forecasts. The results of forecasts using conditional probability density function are assessed by qualitative approach and transformed categorical probability forecasts. The assessment of the forecasts which are transformed to categorical probability forecasts shows that the results of the forecasts by conditional probability density function are much better than those of the forecasts by Piechota's method and logistic regression analysis except for winter season data.

Assessing the skill of seasonal flow forecasts from ECMWF for predicting inflows to multipurpose dams in South Korea (ECMWF 계절 기상 전망을 활용한 국내 다목적댐 유입량 예측의 성능 비교·평가)

  • Lee, Yong Shin;Kang, Shin Uk
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.9
    • /
    • pp.571-583
    • /
    • 2024
  • Forecasting dam inflows in the medium to long term is crucial for effective dam operation and the prevention of water-related disasters such as floods and droughts. However, the increasing frequency of extreme weather events due to climate change has made hydrological forecasting more challenging. Since 2000, seasonal weather forecasts, which provide predictions for weather variables up to about seven months ahead, and their hydrological interpretation, known as Seasonal Flow Forecasts (SFFs) have gained significant global interest. This study utilises seasonal weather forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF), converting them into inflow forecasts using a hydrological model for 12 multipurpose dams in South Korea from 2011 to 2020. We then compare the performance of these SFFs with the Ensemble Streamflow Prediction (ESP). Our results indicate that while SFFs are more effective for short-term predictions of 1-2 months, ESP outperforms SFFs for long-term predictions. Seasonally, the performance of SFFs is higher in October-November but lower from December to February. Moreover, our findings demonstrate that SFFs are highly effective in quantitatively predicting dry conditions, although they tend to underestimate inflows under wet conditions.

A Study on Internet Traffic Forecasting by Combined Forecasts (결합예측 방법을 이용한 인터넷 트래픽 수요 예측 연구)

  • Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.6
    • /
    • pp.1235-1243
    • /
    • 2015
  • Increased data volume in the ICT area has increased the importance of forecasting accuracy for internet traffic. Forecasting results may have paper plans for traffic management and control. In this paper, we propose combined forecasts based on several time series models such as Seasonal ARIMA and Taylor's adjusted Holt-Winters and Fractional ARIMA(FARIMA). In combined forecasting methods, we use simple-combined method, MSE based method (Armstrong, 2001), Ordinary Least Squares (OLS) method and Equality Restricted Least Squares (ERLS) method. The results show that the Seasonal ARIMA model outperforms in 3 hours ahead forecasts and that combined forecasts outperform in longer periods.

Assessment of ECMWF's seasonal weather forecasting skill and Its applicability across South Korean catchments (ECMWF 계절 기상 전망 기술의 정확성 및 국내 유역단위 적용성 평가)

  • Lee, Yong Shin;Kang, Shin Uk
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.9
    • /
    • pp.529-541
    • /
    • 2023
  • Due to the growing concern over forecasting extreme weather events such as droughts caused by climate change, there has been a rising interest in seasonal meteorological forecasts that offer ensemble predictions for the upcoming seven months. Nonetheless, limited research has been conducted in South Korea, particularly in assessing their effectiveness at the catchment-scale. In this study, we assessed the accuracy of ECMWF's seasonal forecasts (including precipitation, temperature, and evapotranspiration) for the period of 2011 to 2020. We focused on 12 multi-purpose reservoir catchments and compared the forecasts to climatology data. Continuous Ranked Probability Skill Score method is adopted to assess the forecast skill, and the linear scaling method was applied to evaluate its impact. The results showed that while the seasonal meteorological forecasts have similar skill to climatology for one month ahead, the skill decreased significantly as the forecast lead time increased. Compared to the climatology, better results were obtained in the Wet season than the Dry season. In particular, during the Wet seasons of the dry years (2015, 2017), the seasonal meteorological forecasts showed the highest skill for all lead times.

Downward Influences of Sudden Stratospheric Warming (SSW) in GloSea6: 2018 SSW Case Study (GloSea6 모형에서의 성층권 돌연승온 하층 영향 분석: 2018년 성층권 돌연승온 사례)

  • Dong-Chan Hong;Hyeon-Seon Park;Seok-Woo Son;Joowan Kim;Johan Lee;Yu-Kyung Hyun
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.493-503
    • /
    • 2023
  • This study investigates the downward influences of sudden stratospheric warming (SSW) in February 2018 using a subseasonal-to-seasonal forecast model, Global Seasonal forecasting system version 6 (GloSea6). To quantify the influences of SSW on the tropospheric prediction skills, free-evolving (FREE) forecasts are compared to stratospheric nudging (NUDGED) forecasts where zonal-mean flows in the stratosphere are relaxed to the observation. When the models are initialized on 8 February 2018, both FREE and NUDGED forecasts successfully predicted the SSW and its downward influences. However, FREE forecasts initialized on 25 January 2018 failed to predict the SSW and downward propagation of negative Northern Annular Mode (NAM). NUDGED forecasts with SSW nudging qualitatively well predicted the downward propagation of negative NAM. In quantity, NUDGED forecasts exhibit a higher mean squared skill score of 500 hPa geopotential height than FREE forecasts in late February and early March. The surface air temperature and precipitation are also better predicted. Cold and dry anomalies over the Eurasia are particularly well predicted in NUDGED compared to FREE forecasts. These results suggest that a successful prediction of SSW could improve the surface prediction skills on subseasonal-to-seasonal time scale.

Verification and Comparison of Forecast Skill between Global Seasonal Forecasting System Version 5 and Unified Model during 2014 (2014년 계절예측시스템과 중기예측모델의 예측성능 비교 및 검증)

  • Lee, Sang-Min;Kang, Hyun-Suk;Kim, Yeon-Hee;Byun, Young-Hwa;Cho, ChunHo
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.59-72
    • /
    • 2016
  • The comparison of prediction errors in geopotential height, temperature, and precipitation forecasts is made quantitatively to evaluate medium-range forecast skills between Global Seasonal Forecasting System version 5 (GloSea5) and Unified Model (UM) in operation by Korea Meteorological Administration during 2014. In addition, the performances in prediction of sea surface temperature anomaly in NINO3.4 region, Madden and Julian Oscillation (MJO) index, and tropical storms in western north Pacific are evaluated. The result of evaluations appears that the forecast skill of UM with lower values of root-mean square error is generally superior to GloSea5 during forecast periods (0 to 12 days). The forecast error tends to increase rapidly in GloSea5 during the first half of the forecast period, and then it shows down so that the skill difference between UM and GloSea5 becomes negligible as the forecast time increases. Precipitation forecast of GloSea5 is not as bad as expected and the skill is comparable to that of UM during 10-day forecasts. Especially, in predictions of sea surface temperature in NINO3.4 region, MJO index, and tropical storms in western Pacific, GloSea5 shows similar or better performance than UM. Throughout comparison of forecast skills for main meteorological elements and weather extremes during medium-range, the effects of initial and model errors in atmosphere-ocean coupled model are verified and it is suggested that GloSea5 is useful system for not only seasonal forecasts but also short- and medium-range forecasts.

Development of a Daily Epidemiological Model of Rice Blast Tailored for Seasonal Disease Early Warning in South Korea

  • Kim, Kwang-Hyung;Jung, Imgook
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.406-417
    • /
    • 2020
  • Early warning services for crop diseases are valuable when they provide timely forecasts that farmers can utilize to inform their disease management decisions. In South Korea, collaborative disease controls that utilize unmanned aerial vehicles are commonly performed for most rice paddies. However, such controls could benefit from seasonal disease early warnings with a lead time of a few months. As a first step to establish a seasonal disease early warning service using seasonal climate forecasts, we developed the EPIRICE Daily Risk Model for rice blast by extracting and modifying the core infection algorithms of the EPIRICE model. The daily risk scores generated by the EPIRICE Daily Risk Model were successfully converted into a realistic and measurable disease value through statistical analyses with 13 rice blast incidence datasets, and subsequently validated using the data from another rice blast experiment conducted in Icheon, South Korea, from 1974 to 2000. The sensitivity of the model to air temperature, relative humidity, and precipitation input variables was examined, and the relative humidity resulted in the most sensitive response from the model. Overall, our results indicate that the EPIRICE Daily Risk Model can be used to produce potential disease risk predictions for the seasonal disease early warning service.

Prediction of the Corona 19's Domestic Internet and Mobile Shopping Transaction Amount

  • JEONG, Dong-Bin
    • The Journal of Economics, Marketing and Management
    • /
    • v.9 no.2
    • /
    • pp.1-10
    • /
    • 2021
  • Purpose: In this work, we examine several time series models to predict internet and mobile transaction amount in South Korea, whereas Jeong (2020) has obtained the optimal forecasts for online shopping transaction amount by using time series models. Additionally, optimal forecasts based on the model considered can be calculated and applied to the Corona 19 situation. Research design, data, and methodology: The data are extracted from the online shopping trend survey of the National Statistical Office, and homogeneous and comparable in size based on 46 realizations sampled from January 2007 to October 2020. To achieve the goal of this work, both multiplicative ARIMA model and Holt-Winters Multiplicative seasonality method are taken into account. In addition, goodness-of-fit measures are used as crucial tools of the appropriate construction of forecasting model. Results: All of the optimal forecasts for the next 12 months for two online shopping transactions maintain a pattern in which the slope increases linearly and steadily with a fixed seasonal change that has been subjected to seasonal fluctuations. Conclusions: It can be confirmed that the mobile shopping transactions is much larger than the internet shopping transactions for the increase in trend and seasonality in the future.

Forecasting of Seasonal Inflow to Reservoir Using Multiple Linear Regression (다중선형회귀분석에 의한 계절별 저수지 유입량 예측)

  • Kang, Jaewon
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.953-963
    • /
    • 2013
  • Reliable long-term streamflow forecasting is invaluable for water resource planning and management which allocates water supply according to the demand of water users. Forecasting of seasonal inflow to Andong dam is performed and assessed using statistical methods based on hydrometeorological data. Predictors which is used to forecast seasonal inflow to Andong dam are selected from southern oscillation index, sea surface temperature, and 500 hPa geopotential height data in northern hemisphere. Predictors are selected by the following procedure. Primary predictors sets are obtained, and then final predictors are determined from the sets. The primary predictor sets for each season are identified using cross correlation and mutual information. The final predictors are identified using partial cross correlation and partial mutual information. In each season, there are three selected predictors. The values are determined using bootstrapping technique considering a specific significance level for predictor selection. Seasonal inflow forecasting is performed by multiple linear regression analysis using the selected predictors for each season, and the results of forecast using cross validation are assessed. Multiple linear regression analysis is performed using SAS. The results of multiple linear regression analysis are assessed by mean squared error and mean absolute error. And contingency table is established and assessed by Heidke skill score. The assessment reveals that the forecasts by multiple linear regression analysis are better than the reference forecasts.

Optimal Multi-Model Ensemble Model Development Using Hierarchical Bayesian Model Based (Hierarchical Bayesian Model을 이용한 GCMs 의 최적 Multi-Model Ensemble 모형 구축)

  • Kwon, Hyun-Han;Min, Young-Mi;Hameed, Saji N.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1147-1151
    • /
    • 2009
  • In this study, we address the problem of producing probability forecasts of summer seasonal rainfall, on the basis of Hindcast experiments from a ensemble of GCMs(cwb, gcps, gdaps, metri, msc_gem, msc_gm2, msc_gm3, msc_sef and ncep). An advanced Hierarchical Bayesian weighting scheme is developed and used to combine nine GCMs seasonal hindcast ensembles. Hindcast period is 23 years from 1981 to 2003. The simplest approach for combining GCM forecasts is to weight each model equally, and this approach is referred to as pooled ensemble. This study proposes a more complex approach which weights the models spatially and seasonally based on past model performance for rainfall. The Bayesian approach to multi-model combination of GCMs determines the relative weights of each GCM with climatology as the prior. The weights are chosen to maximize the likelihood score of the posterior probabilities. The individual GCM ensembles, simple poolings of three and six models, and the optimally combined multimodel ensemble are compared.

  • PDF