• Title/Summary/Keyword: seasonal forecasting

Search Result 221, Processing Time 0.022 seconds

Assessment of the Prediction Derived from Larger Ensemble Size and Different Initial Dates in GloSea6 Hindcast (기상청 기후예측시스템(GloSea6) 과거기후 예측장의 앙상블 확대와 초기시간 변화에 따른 예측 특성 분석)

  • Kim, Ji-Yeong;Park, Yeon-Hee;Ji, Heesook;Hyun, Yu-Kyung;Lee, Johan
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.367-379
    • /
    • 2022
  • In this paper, the evaluation of the performance of Korea Meteorological Administratio (KMA) Global Seasonal forecasting system version 6 (GloSea6) is presented by assessing the effects of larger ensemble size and carrying out the test using different initial conditions for hindcast in sub-seasonal to seasonal scales. The number of ensemble members increases from 3 to 7. The Ratio of Predictable Components (RPC) approaches the appropriate signal magnitude with increase of ensemble size. The improvement of annual variability is shown for all basic variables mainly in mid-high latitude. Over the East Asia region, there are enhancements especially in 500 hPa geopotential height and 850 hPa wind fields. It reveals possibility to improve the performance of East Asian monsoon. Also, the reliability tends to become better as the ensemble size increases in summer than winter. To assess the effects of using different initial conditions, the area-mean values of normalized bias and correlation coefficients are compared for each basic variable for hindcast according to the four initial dates. The results have better performance when the initial date closest to the forecasting time is used in summer. On the seasonal scale, it is better to use four initial dates, where the maximum size of the ensemble increases to 672, mainly in winter. As the use of larger ensemble size, therefore, it is most efficient to use two initial dates for 60-days prediction and four initial dates for 6-months prediction, similar to the current Time-Lagged ensemble method.

Development of Forecasting Model in Tax Exemption Oil of Fisheries Using Seasonal ARIMA

  • Cho, Yong-Jun;Kim, Yeong-Hwa
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1037-1046
    • /
    • 2008
  • Recently, the oil suppliers who supply the tax-exempt oil to the fishery are confronted with big trouble in their supply and demand system due to the unstable global oil prices. We applied the seasonal ARIMA(SARIMA) model to the low-sulfur and high-sulfur crude oil which are in great request and developed forecasting systems for them. Since there are many parameters in SARIMA, it is difficult to estimate the optimal parameters, but it is overcome by using simulation looping program. In conclusion, we found that the obvious seasonality in demand of low-sulfur and these demands are tending downwards gradually.

  • PDF

A Study of Forecast System for Clear-Air Turbulence in Korea, Part II: Graphical Turbulence Guidance (GTG) System (한국의 청천난류 예보 시스템에 대한 연구 Part II: Graphical Turbulence Guidance (GTG) 시스템)

  • Kim, Jung-Hoon;Chun, Hye-Yeong;Jang, Wook;Sharman, R.
    • Atmosphere
    • /
    • v.19 no.3
    • /
    • pp.269-287
    • /
    • 2009
  • CAT (clear-air turbulence) forecasting algorithm, the Graphical Turbulence Guidance (GTG) system developed at NCAR (national center for atmospheric research), is evaluated with available observations (e.g., pilot reports; PIREPs) reported in South Korea during the recent 5 years (2003-2008, excluding 2005). The GTG system includes several steps. First, 44 CAT indices are calculated in the domain of the Regional Data Assimilation and Prediction System (RDAPS) analysis data with 30 km horizontal grid spacing provided by KMA (Korean Meteorological Administration). Second, 10 indices that performed ten best forecasting scores are selected. Finally, 10 indices are combined by measuring the score based on the probability of detection, which is calculated using PIREPs exclusively of moderate-or-greater intensity. In order to investigate the best performance of the GTG system in Korea, various statistical examinations and sensitivity tests of the GTG system are performed by yearly and seasonally classified PIREPs. Performances of the GTG system based on yearly distributed PIREPs have annual variations because the compositions of indices are different from each year. Seasonal forecasting is generally better than yearly forecasting, because selected CAT indices in each season represent meteorological condition much more properly than applying the selected CAT indices to all seasons. Wintertime forecasting is the best among the four seasonal forecastings. This is likely due to that the GTG system consists of many CAT indices related to the jet stream, and turbulence associated with the jet stream can be activated mostly in wintertime under strong jet magnitude. On the other hand, summertime forecasting skill is much less than other seasons. Compared with current operational CAT prediction system (KITFA; Korean Integrated Turbulence Forecasting System), overall performance of the GTG system is better when CAT indices are selected seasonally.

An analysis of effects of seasonal weather forecasting on dam reservoir inflow prediction (장기 기상전망이 댐 저수지 유입량 전망에 미치는 영향 분석)

  • Kim, Seon-Ho;Nam, Woo-Sung;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.7
    • /
    • pp.451-461
    • /
    • 2019
  • The dam reservoir inflow prediction is utilized to ensure for water supply and prevent future droughts. In this study, we predicted the dam reservoir inflow and analyzed how seasonal weather forecasting affected the accuracy of the inflow for even multi-purpose dams. The hindcast and forecast of GloSea5 from KMA were used as input for rainfall-runoff models. TANK, ABCD, K-DRUM and PRMS models which have individual characteristics were applied to simulate inflow prediction. The dam reservoir inflow prediction was assessed for the periods of 1996~2009 and 2015~2016 for the hindcast and forecast respectively. The results of assessment showed that the inflow prediction was underestimated by comparing with the observed inflow. If rainfall-runoff models were calibrated appropriately, the characteristics of the models were not vital for accuracy of the inflow prediction. However the accuracy of seasonal weather forecasting, especially precipitation data is highly connected to the accuracy of the dam inflow prediction. It is recommended to consider underestimation of the inflow prediction when it is used for operations. Futhermore, for accuracy enhancement of the predicted dam inflow, it is more effective to focus on improving a seasonal weather forecasting rather than a rainfall-runoff model.

Weekly Maximum Electric Load Forecasting Method for 104 Weeks Using Multiple Regression Models (다중회귀모형을 이용한 104주 주 최대 전력수요예측)

  • Jung, Hyun-Woo;Kim, Si-Yeon;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1186-1191
    • /
    • 2014
  • Weekly and monthly electric load forecasting are essential for the generator maintenance plan and the systematic operation of the electric power reserve. This paper proposes the weekly maximum electric load forecasting model for 104 weeks with the multiple regression model. Input variables of the multiple regression model are temperatures and GDP that are highly correlated with electric loads. The weekly variable is added as input variable to improve the accuracy of electric load forecasting. Test results show that the proposed algorithm improves the accuracy of electric load forecasting over the seasonal autoregressive integrated moving average model. We expect that the proposed algorithm can contribute to the systematic operation of the power system by improving the accuracy of the electric load forecasting.

Regression models based on cumulative data for forecasting of new product (신제품 수요예측을 위하여 누적자료를 활용한 회귀모형에 관한 연구)

  • Park, Sang-Gue;Oh, Jung-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.1
    • /
    • pp.117-124
    • /
    • 2009
  • If time series data with seasonal effect exist, various statistical models like winters for successful forecasts could be used. But if the data are not enough to estimate seasonal effect, not much methods are available. This paper proposes the statistical forecasting method based on cumulative data when the data are not enough to estimate seasonal effect. We apply this method to real cosmetic sales data and show its better performance over moving average method.

  • PDF

Application of SARIMA Model in Air Cargo Demand Forecasting: Focussing on Incheon-North America Routes (항공화물수요예측에서 계절 ARIMA모형 적용에 관한 연구: 인천국제공항발 미주항공노선을 중심으로)

  • SUH, Bo Hyoun;YANG, Tae Woong;HA, Hun-Koo
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.2
    • /
    • pp.143-159
    • /
    • 2017
  • For forecasting air cargo demand from Incheon National Airport to all of airports in the United States (US), this study employed the Seasonal Autoregressive Integrated Moving Average (SARIMA) method and the time-series data collected from the first quarter of 2003 to the second quarter of 2016. By comparing the SARIMA method against the ARIMA method, it was found that the SARIMA method performs well, relatively with time series data highlighting seasonal periodic characteristics. While existing previous research was generally focused on the air passenger and the air cargo as a whole rather than specific air routes, this study emphasized on a specific air cargo demand to the US route. The meaningful findings would support the future research.

Forecasting the Air Cargo Demand With Seasonal ARIMA Model: Focusing on ICN to EU Route (계절성 ARIMA 모형을 이용한 항공화물 수요예측: 인천국제공항발 유럽항공노선을 중심으로)

  • Min, Kyung-Chang;Jun, Young-In;Ha, Hun-Koo
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.3
    • /
    • pp.3-18
    • /
    • 2013
  • This study develops a forecasting method to estimate air cargo demand from ICN(Incheon International Airport) to all airports in EU with Seasonal Autoregressive Integrated Moving Average (SARIMA) Model using volumes from the first quarter of 2000 to the fourth quarter of 2009. This paper shows the superiority of SARIMA Model by comparing the forecasting accuracy of SARIMA with that of other ARIMA (Autoregressive Integrated Moving Average) models. Given that very few papers and researches focuses on air route, this paper will be helpful to researchers concerned with air cargo.

A Development of Summer Seasonal Rainfall and Extreme Rainfall Outlook Using Bayesian Beta Model and Climate Information (기상인자 및 Bayesian Beta 모형을 이용한 여름철 계절강수량 및 지속시간별 극치 강수량 전망 기법 개발)

  • Kim, Yong-Tak;Lee, Moon-Seob;Chae, Byung-Soo;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.655-669
    • /
    • 2018
  • In this study, we developed a hybrid forecasting model based on a four-parameter distribution which allows a simultaneous season-ahead forecasting for both seasonal rainfall and sub-daily rainfall in Han-River and Geum-River basins. The proposed model is mainly utilized a set of time-varying predictors and the associated model parameters were estimated within a Bayesian nonstationary rainfall frequency framework. The hybrid forecasting model was validated through an cross-validatory experiment using the recent rainfall events during 2014~2017 in both basins. The seasonal precipitation results showed a good agreement with the observations, which is about 86.3% and 98.9% in Han-River basin and Geum-River basin, respectively. Similarly, for the extreme rainfalls at sub-daily scale, the results showed a good correspondence between the observed and simulated rainfalls with a range of 65.9~99.7%. Therefore, it can be concluded that the proposed model could be used to better consider climate variability at multiple time scales.

Verification and Comparison of Forecast Skill between Global Seasonal Forecasting System Version 5 and Unified Model during 2014 (2014년 계절예측시스템과 중기예측모델의 예측성능 비교 및 검증)

  • Lee, Sang-Min;Kang, Hyun-Suk;Kim, Yeon-Hee;Byun, Young-Hwa;Cho, ChunHo
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.59-72
    • /
    • 2016
  • The comparison of prediction errors in geopotential height, temperature, and precipitation forecasts is made quantitatively to evaluate medium-range forecast skills between Global Seasonal Forecasting System version 5 (GloSea5) and Unified Model (UM) in operation by Korea Meteorological Administration during 2014. In addition, the performances in prediction of sea surface temperature anomaly in NINO3.4 region, Madden and Julian Oscillation (MJO) index, and tropical storms in western north Pacific are evaluated. The result of evaluations appears that the forecast skill of UM with lower values of root-mean square error is generally superior to GloSea5 during forecast periods (0 to 12 days). The forecast error tends to increase rapidly in GloSea5 during the first half of the forecast period, and then it shows down so that the skill difference between UM and GloSea5 becomes negligible as the forecast time increases. Precipitation forecast of GloSea5 is not as bad as expected and the skill is comparable to that of UM during 10-day forecasts. Especially, in predictions of sea surface temperature in NINO3.4 region, MJO index, and tropical storms in western Pacific, GloSea5 shows similar or better performance than UM. Throughout comparison of forecast skills for main meteorological elements and weather extremes during medium-range, the effects of initial and model errors in atmosphere-ocean coupled model are verified and it is suggested that GloSea5 is useful system for not only seasonal forecasts but also short- and medium-range forecasts.