• 제목/요약/키워드: search space

검색결과 1,433건 처리시간 0.027초

Space Search에 의한 회로의 단선 결함을 발견 및 위치 검색법 (Detection and Location of Open Circuit Fault by Space Search)

  • 한경호;강상원;이인성
    • The Journal of the Acoustical Society of Korea
    • /
    • 제14권2E호
    • /
    • pp.43-49
    • /
    • 1995
  • 인공지능(AI)의 한기법인 Space Search 기법을 이용하여 회로의 단선 결함의 유무 및 결함위치를 찾아내는 방법을 제시하였다. 보통 회로의 결함은 단선 및 단락의 구조적 결함으로 나뉘어진다. 두가지 결함 모두 회로의 기능에 중대한 이상을 초래한다. 그중 단선에 의한 회로의 결함에 대하여 다루었다. 우선 회로를 net와 net의 연결 path에 따라 tree 구조로 변환하였다. 서로 독립된 net들은 서로 다른 tree의 node를 이루며 각각의 tree는 적기적으로 연결됨이 없다. 각 tree의 최상단부의 root node에 test vector를 입력하고 최하단부의 leaf node에서 vector를 관찰하여 입력된 test vector와 비교한다. 그 비교 결과 동일 유무에 따라 결함의 유무를 판정한다. 결함이 있다고 판정된 leaf node는 depth search 방법에 의하여 root node쪽으로 test vector를 관찰하여, 전기적 신호에 의하여 회로의 서놔 단선된 위치를 찾아내도록 하는 방법을 제시하였다.

  • PDF

소분자 도킹에서 탐색공간의 축소 방법 (Search Space Reduction Techniques in Small Molecular Docking)

  • 조승주
    • 통합자연과학논문집
    • /
    • 제3권3호
    • /
    • pp.143-147
    • /
    • 2010
  • Since it is of great importance to know how a ligand binds to a receptor, there have been a lot of efforts to improve the quality of prediction of docking poses. Earlier efforts were focused on improving search algorithm and scoring function in a docking program resulting in a partial improvement with a lot of variations. Although these are basically very important and essential, more tangible improvements came from the reduction of search space. In a normal docking study, the approximate active site is assumed to be known. After defining active site, scoring functions and search algorithms are used to locate the expected binding pose within this search space. A good search algorithm will sample wisely toward the correct binding pose. By careful study of receptor structure, it was possible to prioritize sub-space in the active site using "receptor-based pharmacophores" or "hot spots". In a sense, these techniques reduce the search space from the beginning. Further improvements were made when the bound ligand structure is available, i.e., the searching could be directed by molecular similarity using ligand information. This could be very helpful to increase the accuracy of binding pose. In addition, if the biological activity data is available, docking program could be improved to the level of being useful in affinity prediction for a series of congeneric ligands. Since the number of co-crystal structures is increasing in protein databank, "Ligand-Guided Docking" to reduce the search space would be more important to improve the accuracy of docking pose prediction and the efficiency of virtual screening. Further improvements in this area would be useful to produce more reliable docking programs.

R-CORE를 통한 베이지안 망 구조 학습의 탐색 공간 분석 (Search Space Analysis of R-CORE Method for Bayesian Network Structure Learning and Its Effectiveness on Structural Quality)

  • 정성원;이도헌;이광형
    • 한국지능시스템학회논문지
    • /
    • 제18권4호
    • /
    • pp.572-578
    • /
    • 2008
  • 본 논문에서는 대규모 베이지안 망 구조 학습을 위해 제안되었던 R-CORE 방법의 탐색 공간의 크기에 대한 개략적인 분석과 실제 문제에 적용하였을 경우의 효과에 대한 실험적 결과를 제시한다. R-CORE 방법은 베이지안 망 구조 학습의 탐색 공간을 축소하기 위해 제안된 확률변수들의 재귀적 군집화와 오더 제한 방법이다. 알려진 벤치마크 베이지안 망을 이용한 분석을 통해, 제안되었던 R-CORE 방법이 worst case에는 기존의 방법과 유사한 탐색 공간을 가지나 평균적으로 기존방법보다 훨씬 적은 탐색 공간만을 고려한다는 것을 보인다. 또한 평균적으로 훨씬 적은 탐색 공간만을 고려하는 결과, 구조 탐색에서 기존 방법에 비해 상대적으로 적은 overfitting이 일어남을 실험적으로 보인다.

확률적 타부 탐색 전략을 이용한 새로운 함수 최적화 방법에 관한 연구 (A Study on a New Function Optimization Method Using Probabilistic Tabu Search Strategy)

  • 김형수;황기현;박준호
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권11호
    • /
    • pp.532-540
    • /
    • 2001
  • In this paper, we propose a probabilistic tabu search strategy for function optimization. It is composed of two procedures, one is Basic search procedure that plays a role in local search, and the other is Restarting procedure that enables to diversify search region. In basic search procedure, we use Belief space and Near region to create neighbors. Belief space is made of high-rank neighbors to effectively restrict searching space, so it can improve searching time and local or global searching capability. When a solution is converged in a local area, Restarting procedure works to search other regions. In this time, we use Probabilistic Tabu Strategy(PTS) to adjust parameters such as a reducing rate, initial searching region etc., which makes enhance the performance of searching ability in various problems. In order to show the usefulness of the proposed method, the PTS is applied to the minimization problems such as De Jong functions, Ackley function, and Griewank functions etc., the results are compared with those of GA or EP.

  • PDF

국내 천문학 논문 검색 DB 구축 (CONSTRUCTION OF KOREAN ASTRONOMICAL JOURNAL DB)

  • 성현일;김순욱;임인성
    • 천문학논총
    • /
    • 제21권2호
    • /
    • pp.113-119
    • /
    • 2006
  • The Korean Astronomical Data Center(KADC) in Korea Astronomy and Space Science Institute(KASI) has developed a database of astronomical journals published by the Korean Astronomical Society and the Korean Space Science Society. It consists of all bibliographic records of the Journal of the Korean Astronomical Society(JKAS), Publication of the Korean Astronomical Society(PKAS), and Journal of Astronomy & Space Sciences(JASS). The KADC provides useful search functions in the search page such as search criterion of bibcode, publication date, author names, title words, or abstract words. The journal name is one of the search criterion in which more than one journal can be designated at the same time. The criterion of author name is provided bilingually: English or Korean. The abstract and full text can be downloaded as PDF files. It is also possible to search papers related to a specific research topic published in Korean astronomical journals, provided by the KADC, which often cannot be found the worldwide, Astrophysics Data System(ADS) services. The KADC will become basic infrastructure for the systematic construction of bibliographic records, and hence, make the society of Korean astronomers more interactive and collaborative.

텐서공간모델 기반 시멘틱 검색 기법 (A Tensor Space Model based Semantic Search Technique)

  • 홍기주;김한준;장재영;전종훈
    • 한국전자거래학회지
    • /
    • 제21권4호
    • /
    • pp.1-14
    • /
    • 2016
  • 시멘틱 검색은 검색 사용자의 인지적 노력을 최소화하면서 사용자 질의의 문맥을 이해하여 의미에 맞는 문서를 정확히 찾아주는 기술이다. 아직 시멘틱 검색 기술은 온톨로지 또는 시멘틱 메타데이터 구축의 난제를 갖고 있으며 상용화 사례도 매우 미흡한 실정이다. 본 논문은 기존 시멘틱 검색 엔진의 한계를 극복하기 위하여 이전 연구에서 고안한 위키피디아 기반의 시멘틱 텐서공간모델을 활용하여 새로운 시멘틱 검색 기법을 제안한다. 제안하는 시멘틱 기법은 문서 집합에 출현하는 '단어'가 텐서공간모델에서 '문서-개념'의 2차 텐서(행렬), '개념'은 '문서-단어'의 2차 텐서로 표현된다는 성질을 이용하여 시멘틱 검색을 위해 요구되는 온톨로지 구축의 필요성을 없앤다. 그럼에도 불구하고, OHSUMED, SCOPUS 데이터셋을 이용한 성능평가를 통해 제안 기법이 벡터공간모델에서의 기존 검색 기법보다 우수함을 보인다.

A Hybrid Index of Voronoi and Grid Partition for NN Search

  • Seokjin Im
    • International journal of advanced smart convergence
    • /
    • 제12권1호
    • /
    • pp.1-8
    • /
    • 2023
  • Smart IoT over high speed network and high performance smart devices explodes the ubiquitous services and applications. Nearest Neighbor(NN) query is one of the important type of queries that have to be supported for ubiquitous information services. In order to process efficiently NN queries in the wireless broadcast environment, it is important that the clients determine quickly the search space and filter out NN from the candidates containing the search space. In this paper, we propose a hybrid index of Voronoi and grid partition to provide quick search space decision and rapid filtering out NN from the candidates. Grid partition plays the role of helping quick search space decision and Voronoi partition providing the rapid filtering. We show the effectiveness of the proposed index by comparing the existing indexing schemes in the access time and tuning time. The evaluation shows the proposed index scheme makes the two performance parameters improved than the existing schemes.

연속탐색공간에 대한 진화적 해석 (Evolutionary Analysis for Continuous Search Space)

  • 이준성;배병규
    • 한국지능시스템학회논문지
    • /
    • 제21권2호
    • /
    • pp.206-211
    • /
    • 2011
  • 본 논문에서는 연속적인 파라미터 공간에 대한 최적화에 대해 진화적 알고리즘의 특징적인 형상화를 제시한다. 이 방법은유전알고리즘이 연속적인 탐색공간에서의 파라미터 식별에 대해 가장 강점을 지녔다는 점에 착안한 것이다. 유전알고리즘과 제안한 알고리즘과의 주요한 차이점은 개별적 또는 연속적인 묘사의 차이가 있다는 것이다. 잘 알려진 실험함수의 최적화문제를 도입하여 연속 탐색공간 문제에 대해 제안하는 알고리즘에 대해 계산시간 및 사용메모리 등의 성능이 우수하다는 효율성을 보였다.

Optimized Polynomial Neural Network Classifier Designed with the Aid of Space Search Simultaneous Tuning Strategy and Data Preprocessing Techniques

  • Huang, Wei;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.911-917
    • /
    • 2017
  • There are generally three folds when developing neural network classifiers. They are as follows: 1) discriminant function; 2) lots of parameters in the design of classifier; and 3) high dimensional training data. Along with this viewpoint, we propose space search optimized polynomial neural network classifier (PNNC) with the aid of data preprocessing technique and simultaneous tuning strategy, which is a balance optimization strategy used in the design of PNNC when running space search optimization. Unlike the conventional probabilistic neural network classifier, the proposed neural network classifier adopts two type of polynomials for developing discriminant functions. The overall optimization of PNNC is realized with the aid of so-called structure optimization and parameter optimization with the use of simultaneous tuning strategy. Space search optimization algorithm is considered as a optimize vehicle to help the implement both structure and parameter optimization in the construction of PNNC. Furthermore, principal component analysis and linear discriminate analysis are selected as the data preprocessing techniques for PNNC. Experimental results show that the proposed neural network classifier obtains better performance in comparison with some other well-known classifiers in terms of accuracy classification rate.

Design of Space Search-Optimized Polynomial Neural Networks with the Aid of Ranking Selection and L2-norm Regularization

  • Wang, Dan;Oh, Sung-Kwun;Kim, Eun-Hu
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1724-1731
    • /
    • 2018
  • The conventional polynomial neural network (PNN) is a classical flexible neural structure and self-organizing network, however it is not free from the limitation of overfitting problem. In this study, we propose a space search-optimized polynomial neural network (ssPNN) structure to alleviate this problem. Ranking selection is realized by means of ranking selection-based performance index (RS_PI) which is combined with conventional performance index (PI) and coefficients based performance index (CPI) (viz. the sum of squared coefficient). Unlike the conventional PNN, L2-norm regularization method for estimating the polynomial coefficients is also used when designing the ssPNN. Furthermore, space search optimization (SSO) is exploited here to optimize the parameters of ssPNN (viz. the number of input variables, which variables will be selected as input variables, and the type of polynomial). Experimental results show that the proposed ranking selection-based polynomial neural network gives rise to better performance in comparison with the neuron fuzzy models reported in the literatures.