• Title/Summary/Keyword: search range

검색결과 831건 처리시간 0.018초

머신러닝과 KSCA를 활용한 디지털 사진의 색 분석 -한국 자연 풍경 낮과 밤 사진을 중심으로- (Color Analyses on Digital Photos Using Machine Learning and KSCA - Focusing on Korean Natural Daytime/nighttime Scenery -)

  • 권희은;구자준
    • 트랜스-
    • /
    • 제12권
    • /
    • pp.51-79
    • /
    • 2022
  • 본 연구에서는 색채 계획을 통해 콘텐츠를 제작할 때 참고할 만한 색을 도출하는 방법을 모색하기 위하여 진행되었다. 대상이 된 이미지는 한국 내의 자연풍광을 다룬 사진들로 머신러닝을 활용해 낮과 밤이 어떤 색으로 표현되는지 알아보고, KSCA를 통해 색 빈도를 도출하여 두 결과를 비교, 분석하였다. 낮과 밤 사진의 색을 머신러닝으로 구분한 결과, 51~100%로 구분했을 때, 낮의 색의 영역이 밤의 색보다 2.45배가량 더 많았다. 낮 class의 색은 white를 중심으로, 밤 class의 색은 black을 중심으로 명도에 따라 분포하였다. 낮 class 70%이상의 색이 647, 밤 class 70% 이상의 색이 252, 나머지(31-69%)가 101개로서 중간 영역의 색의 수는 적고 낮과 밤으로 비교적 뚜렷하게 구분되었다. 낮과 밤 class의 색 분포 결과를 통해 명도로 구분되는 두 class의 경계 색채값이 무엇인지 확인할 수 있었다. KSCA를 활용해 디지털 사진의 빈도를 분석한 결과는 전체적으로 밝은 낮 사진에서는 황색, 어두운 밤 사진에서는 청색 위주의 색이 표현되었음을 보여주었다. 낮 사진 빈도에서는 상위 40%에 해당하는 색이 거의 무채색에 가까울 정도로 채도가 낮았다. 또 white & black에 가까운 색이 가장 높은 빈도를 보여 명도차가 크다는 것을 알 수 있었다. 밤 사진의 빈도를 보면 상위 50% 가량 되는 색이 명도 2(먼셀 기호)에 해당하는 어두운 색이다. 그에 비해 빈도 중위권(50~80%)의 명도는 상대적으로 조금 높고(명도 3-4), 하위 20%에서는 여러 색들의 명도차가 크다. 난색들은 빈도 하위 8% 이내에서 간헐적으로 볼 수 있었다. 배색띠를 보았을 때, 전체적으로 남색을 위주로 조화로운 배색을 이루고 있었다. 본 연구의 색의 분포와 빈도의 결과값은 한국 내의 자연 풍경에 관한 디지털 디자인의 색채 계획에 참고 자료로 활용될 수 있을 것이다. 또한 색 분포를 나눈 결과는 해당색이 특정 디자인의 주조색이나 배경색으로 사용될 경우에 두 class 중 어느 쪽에 더 가까운 색인지에 대해 참고사항이 될 수 있을 것이며, 분석 이미지들을 몇 가지 class로 나눈다면, 각 class의 색 분포의 특성에 따라 분석 이미지에 사용되지 않은 색도 어느 class에 얼마큼 더 가까운 이미지인지 도출할 수 있을 것이다.