해양 전자탐사의 겉보기 비저항은 해수층으로 인해 지표탐사와 그 정의가 달라지게 되며, 이를 적절히 계산할 수 있는 알고리듬의 개발은 해양 전자탐사의 출발점이 될 수 있다. 이를 위해, 1차원 층서 가스 하이드레이트 수치모형과 해수층과 그 하부의 반 무한매질로 이루어진 수치모형에서 계산한 전자기적 반응을 비교분석하였다. 겉보기 비저항을 계산하기 위해서는 실수와 허수 성분보다는 진폭과 위상을 사용하는 것이 더 적합하였으며 해양 전자탐사 반응의 민감도를 정량적으로 분석하여, 근거리 영역에서는 위상이 원거리 영역에서는 진폭 성분이 더 안정적인 결과를 주는 것을 알았다. 또한 위상과 진폭의 선택기준으로써 유도상수의 값을 제안하였다. 이러한 분석을 토대로 격자 탐색법(grid search)을 사용하여 겉보기 비저항을 계산하는 수치알고리듬을 개발하였다. 개발된 알고리듬을 이용하여 1차원 층서 가스 하이드레이트 수치모형의 다양한 변수를 변화시켜가며 겉보기 비저항을 계산해봄으로써 알고리듬의 타당성을 검증하였다. 마지막으로, 계산한 겉보기 비저항 값을 이용한 가스 하이드레이트 부존양상 정보의 도출가능성을 살펴보았다. 동해 울릉분지의 가스 하이드레이트 부존양상을 모사한 2차원 가스 하이드레이트 수치모형에서 계산된 자료의 겉치레 단면도는 가스 하이드레이트 부존양상 정보 추출이 가능함을 보여주었다.
Purpose - This study aims to build a systematic frame for effective marketing performances by prioritizing product type and pertinent channel that are appropriate for digital channel characteristics. FCB grid model was used to define a product type, and Internet communication satisfaction index was considered as a marketing performance measuring tool for digital channel. Research design, data, and methodology - As systematic understanding for Digital marketing is still unfamiliar to even professional marketer, the hypothesis was established based on preliminary research by conducting a qualitative survey of marketing experts who already experienced digital marketing in the fields as well as existing related study literature. Through a preliminary research, the degree for understanding for digital marketing, current digital marketing (including product/channel mix) execution status, and difficulties for marketers who had experienced digital marketing were figured out. Based on preliminary research, the main part of survey was designed to examine which type of product would be effective for digital marketing and which digital channel would be effective to achieve marketing performance in line with marketing objectives. To collect data, the questionnaire survey was conducted for professional marketers who had experienced digital marketing in 10 different fields including FMCG, cosmetics, distribution industry for one month (July, 10, 2014~Aug, 10, 2014). A total of 90 questionnaire were distributed and 66 questionnaires were used for the analysis, excluding the unanswered and insincere questionnaires. The data were analysed using SPSS ver.18.0. Results - The analysis for product type which is pertinent to digital marketing and prioritization for digital channel per digital marketing performance type could be summarized as followings. First, high involvement buying decision type of product and rational purchasing decision type of product in FCB grid are more effective for digital marketing in terms of marketing performance. Therefore, marketers in field would prioritize considering product type before executing digital marketing. Second, factor for sales increase, potential consumer creation and brand awareness was represented respectively 31.25%, 21.9%, and 20.8% as a result of factor analysis in terms of digital marketing channel performance. Third, effective major digital channel per digital marketing performance factor was differently identified as each digital channel has its own peculiarity. For instance, search engine is more effective for increasing sales while social media such as facebook and Kakaotalk is more effective for encouraging consumer participation. Conclusions - As a result of this study, product type and peculiarity which were pertinently fit to digital marketing were identified by using FCB grid model, and also suggested framework for decision making of digital channel selection in line with marketing objectives for effective marketing performance. It also provided insight to professional marketer which type of product could be effective for digital marketing execution as well as which factors should be measured for digital marketing performance.
본 논문에서는 인체 감지형 자기장 코일의 감지거리 13.4mm를 이용한 디지털 잠금장치 설계에 관한 연구를 하고자 한다. 현재 사용되는 디지털 잠금장치와는 다르게 실외 케이스는 기존의 고유번호 입력버튼, 조명, 보호 커버, 해당 pcb, 외곽 케이스, 데이터 전송 케이블 등이 삭제되고 구동전원 ON/OFF 스위치와 비상 단자로만 구성하였다. 실내 케이스는 내부에 설치 된 자기장 코일기판이 유리문 몸체에 밀착된 상태로 12mm 간격의 맞은편 실외에서 전송되는 전기적 저항 값을 감지하면 그에 대응하는 유도전류가 흐르게 된다. 이때, 해당 원형 코일의 주파수 변환이 이루어지면 자기장 코일은 센서의 역할을 수행하게 된다. 센서로서의 자기장 코일은 인체가 감지되기 전과 감지 후에 출력되는 발진 주파수의 크기 변화를 감지하고 2,000%이상 증폭시켜 디지털 신호로 변환 조합한 다음 전용 소프트웨어에 전송하여 내장된 고정 데이터와 비교하여 검색하는 역할을 한다. 연구결과 자기장 코일 $12.8{\emptyset}$ 기준으로 인체의 터치 면적에 따른 감지시간은 30% 대비 0.08sec, 80% 대비 0.03sec이며 감지거리는 13.4mm로 최고 수준으로 측정되었다.
This study focuses on autonomous exploration based on map expansion for an underwater robot equipped with acoustic sonars. Map expansion is applicable to large-area mapping, but it may affect localization accuracy. Thus, as the key contribution of this paper, we propose a method for underwater autonomous exploration wherein the robot determines the trade-off between map expansion ratio and position accuracy, selects which of the two has higher priority, and then moves to a mission step. An occupancy grid map is synthesized by utilizing the measurements of an acoustic range sonar that determines the probability of occupancy. This information is then used to determine a path to the frontier, which becomes the new search point. During area searching and map building, the robot revisits artificial landmarks to improve its position accuracy as based on imaging sonar-based recognition and EKF-SLAM if the position accuracy is above the predetermined threshold. Additionally, real-time experiments were conducted by using an underwater robot, yShark, to validate the proposed method, and the analysis of the results is discussed herein.
In this paper, a different technique to predict the effects of soil-structure interaction (SSI) on seismic response of building systems is investigated. The technique use a machine learning algorithm called Support Vector Regression (SVR) with technical and analytical results as input features. Normally, the effects of SSI on seismic response of existing building systems can be identified by different types of large data sets. Therefore, predicting and estimating the seismic response of building is a difficult task. It is possible to approximate a real valued function of the seismic response and make accurate investing choices regarding the design of building system and reduce the risk involved, by giving the right experimental and/or numerical data to a machine learning regression, such as SVR. The seismic response of both single-degree-of-freedom system and six-storey RC frame which can be represent of a broad range of existing structures, is estimated using proposed SVR model, while allowing flexibility of the soil-foundation system and SSI effects. The seismic response of both single-degree-of-freedom system and six-storey RC frame which can be represent of a broad range of existing structures, is estimated using proposed SVR model, while allowing flexibility of the soil-foundation system and SSI effects. The results show that the performance of the technique can be predicted by reducing the number of real data input features. Further, performance enhancement was achieved by optimizing the RBF kernel and SVR parameters through grid search.
This article suggests the machine learning model, i.e., classifier, for predicting the production quality of free-machining 303-series stainless steel(STS303) small rolling wire rods according to the operating condition of the manufacturing process. For the development of the classifier, manufacturing data for 37 operating variables were collected from the manufacturing execution system(MES) of Company S, and the 12 types of derived variables were generated based on literature review and interviews with field experts. This research was performed with data preprocessing, exploratory data analysis, feature selection, machine learning modeling, and the evaluation of alternative models. In the preprocessing stage, missing values and outliers are removed, and oversampling using SMOTE(Synthetic oversampling technique) to resolve data imbalance. Features are selected by variable importance of LASSO(Least absolute shrinkage and selection operator) regression, extreme gradient boosting(XGBoost), and random forest models. Finally, logistic regression, support vector machine(SVM), random forest, and XGBoost are developed as a classifier to predict the adequate or defective products with new operating conditions. The optimal hyper-parameters for each model are investigated by the grid search and random search methods based on k-fold cross-validation. As a result of the experiment, XGBoost showed relatively high predictive performance compared to other models with an accuracy of 0.9929, specificity of 0.9372, F1-score of 0.9963, and logarithmic loss of 0.0209. The classifier developed in this study is expected to improve productivity by enabling effective management of the manufacturing process for the STS303 small rolling wire rods.
New motor development requires high-speed load testing using dynamo equipment to calculate the efficiency of the motor. Abnormal noise and vibration may occur in the test equipment rotating at high speed due to misalignment of the connecting shaft or looseness of the fixation, which may lead to safety accidents. In this study, three single-axis vibration sensors for X, Y, and Z axes were attached on the surface of the test motor to measure the vibration value of vibration. Analog data collected from these sensors was used in classification models for anomaly detection. Since the classification accuracy was around only 93%, commonly used hyperparameter optimization techniques such as Grid search, Random search, and Bayesian Optimization were applied to increase accuracy. In addition, Response Surface Method based on Design of Experiment was also used for hyperparameter optimization. However, it was found that there were limits to improving accuracy with these methods. The reason is that the sampling data from an analog signal does not reflect the patterns hidden in the signal. Therefore, in order to find pattern information of the sampling data, we obtained descriptive statistics such as mean, variance, skewness, kurtosis, and percentiles of the analog data, and applied them to the classification models. Classification models using descriptive statistics showed excellent performance improvement. The developed model can be used as a monitoring system that detects abnormal conditions of the motor test.
비정상 유동의 모사를 위한 병렬화된 비정렬 중첩격자기법을 개발하였다. 비정렬 격자계에서 효율적이고 강건하게 쓰일 수 있는 탐색방법과 병렬경계에서 유동적으로 변하는 데이터의 수를 처리할 수 있는 자료구조를 제안하였다. 격자계간의 정보전달을 위한 삽간경계면을 정의하였고, 공간상의 이차정확도를 유지하기 위한 삽간방법 및 물체내부에 위치하는 삽간점에 대한 처리방법을 제안하였다. 개발된 해석코드의 검증을 위해 Eglin/Pylon 형상에서 분리되는 스토어의 궤적을 해석하여 실험치와 비교하였고, 다 물체간의 상대운동이 있는 비정상유동의 적용을 위해 세 개의 스토어 분리에 대한 해석을 수행하였다.
Through the correspondence works with IEC in the smart grid fields and power IT fields, we set up the interpretation work procedure and defined the work rule for correspondence by analyzing the work results. In addition, we suggest cases for discussion of terms and definitions in the IEC and analyze them and then propose a matrix classification system for standardization to solve the cases for discussion. The matrix classification system with 3-axes of classification has been applied to newly emerging terminologies followed by smart gird. We drew the usefulness in search of terms in application fields and showed the cases of applying the matrix classification. The IEC Electropedia classification standard is unclear and the classification is mixed with principle, application and product areas. We proposed a new working group in IEC TC1 for research on the matrix classification system and then TC 1 decided to organize a new WG titled in the "IEV structure and supporting tools".
Journal of the Korean Data and Information Science Society
/
제27권4호
/
pp.911-923
/
2016
빅데이터 시대에 머신러닝의 중요성은 더욱 부각되고 있고 로지스틱 회귀는 머신러닝에서 분류를 위한 방법으로 의료, 경제학, 마케팅 및 사회과학 전반에 걸쳐 널리 사용되고 있다. 지금까지 R과 Hadoop의 통합환경인 RHIPE 플랫폼은 설치 및 MapReduce 구현의 어려움으로 인해 거의 연구가 이루지 지지 않았다. 본 논문에서는 대용량 데이터에 대해 로지스틱 회귀 추정을 위한 두가지 알고리즘 즉, Gradient Descent 알고리즘과 Newton-Raphson 알고리즘에 대해 MapReduce로 구현하고, 실제 데이터와 모의실험 데이터를 가지고 이들 알고리즘 간의 성능을 비교하고자 한다. 알고리즘 성능 실험에서 Gradient Descent 알고리즘은 학습률에 크게 의존하고 또한 데이터에 따라 수렴하지 않는 문제를 갖고 있다. Newton-Raphson 알고리즘은 학습률이 불필요 할 뿐만 아니라 모든 실험 데이터에 대해 좋은 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.