• Title/Summary/Keyword: sealing element

Search Result 139, Processing Time 0.021 seconds

Computer Simulation on Insulation Characteristics of Composite Material O-rings (복합소재 O-링 접합계면의 단열특성에 관한 컴퓨터 시뮬레이션)

  • Kim, Chung-Kyun;Kim, Sung-Won;Cho, Seung-Hyun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.291-295
    • /
    • 2002
  • O-ring seal is usual component part in various mechanical apparatus for sealing that makes efficient performance of the equipments. The sealing performance of O-ring is affected in environments of the O-rings, like that applied pressure, working temperature, pre-compressed ratio and materials. In this paper, a pressurized, compressed elastomeric bi-polymer O-ring inserted into a rectangular groove is analyzed numerically using the MARC finite element program. The calculated FEM results showed that bi-polymer O-ring that is manufactured by NBR for an inner and FFKM for an outer ring shows a low temperature distribution among various bi-polymer O-ring models. But, the normal contact stress between the flange and upper part of the O-ring is small compared to other bi-polymer model.

  • PDF

Robust Design of Engine Head Gasket (엔진 헤드 개스킷 강건 설계)

  • Lee, Seungwoo;Yang, Chulho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.416-424
    • /
    • 2016
  • A robust design of head gasket is pursued by using FEA model of engine assembly. Engine assembly model consists of cylinder head, block, gasket, and head bolt is constructed to understand a complex behavior of this engine compound. Thermal loading is performed on the assembled engine cylinder and block to obtain temperature field. Firing load is added to the results of heat transfer analysis to simulate the engine operation condition. Temperature filed results from heat transfer analysis are mapped into the structural mesh. Contact pressure distribution along the bead has been monitored for the engine operation condition. Based on the results obtained from the analysis, Taguchi method has been adopted for a robust design process of head gasket. Among the control factors, bolt size affects most robustness of head gasket sealing.

The Analysis of Characteristics of Water Seal by Using the FEM (Water Seal 특성의 전산 해석)

  • Han, Seung-U;Kim, Wan-Du;Lee, Hak-Ju
    • 연구논문집
    • /
    • s.24
    • /
    • pp.175-188
    • /
    • 1994
  • Water seal is composed of metal case, garter spring, and NBR. Axisymmetric, large deformation non-linear contact problems were solved by using the finite element method for the evaluation of performance of the water seal. Effects of the interference between seal and shaft, and the garter spring on the seal characteristics were considered in this analysis. The contact force and sealing performance increased as the interference and spring stiffness increases. And middle seal is main role sealing performance. Further research efforts are required to consider the effects of the garter spring stiffness, the eccentricity by the shaft or case, and the water pressure.

  • PDF

A Study on the Thermal Properties of Glass for Effective Salvage Process of Flat Cathode-ray Tube (평면 음극선관의 재생률 향상을 위한 유리재료의 열적 특성에 관한 연구)

  • Park, Sang-Hu;Lee, Bu-Yun;Kim, Won-Jin;Heo, Bo-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1988-1994
    • /
    • 2001
  • The CRT(Cathode-ray Tube) of salvage is a process of separating the panel and funnel to recycle a cathode-ray tube. In this paper, the thermal properties of glass for CRT were studied to improve its recycling ratio. In the salvage process, several patterns of breakage, as called 'comer pull', were easily generated on the sealing surface of panel or funnel glass due to the residual tensile stress, which had correlations with some parameters of the manufacturing process of CRT and the initial material properties of glass. Finite element analyses and experimental approaches on the flit sealing process were carried out to obtain the major characteristic of glass related to the residual stress. From this study, it was identified that the thermal expansion coefficient of glass had much influence on the residual stress of panel glass after frit sealing process. Therefore, the optimal conditions of thermal properties for CRT glass were proposed to achieve an effective salvage process. By using these optimal conditions, the size of comer pull on the panel and funnel glass was reduced to 10% level compared with the original size, and the recycling ratio of CRT was increased in the salvage process.

Study on the Stress and Displacement Distribution in the Glass Plate for Vacuum-sealed Flat Panel Displays (평판디스플레이용 진공패널에서 유리기판이 받는 응력 및 변위분포에 관한 연구)

  • Kim, Hui-Su;Jo, Yeong-Rae;Mun, Je-Do;O, Jae-Yeol;Jeong, Tae-Eun;Jeong, Hyo-Su
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1121-1126
    • /
    • 1998
  • For vacuum seated panel, stresses and displacements in the glass plate were calculated. The geometric variables for our experiment were the thickness of glass plate, the size of panel and the width of sealing line. The fracture behaviors and displacements of its under the vacuum were measured. From the measurement of strains and fracture, it was considered that the maximum stress acted at the middle of the sides of the panel. The stresses and displacement distribution of manufactured panels were greatly dependent on the width of the sealing line in the panel. The measured values are more similar to the values which were calculated from the condition of built-in edge as the width of the sealing line is larger. The measured displacement of the panel, made of 3mm thick glass plate, with size of $80\Times120\textrm{mm}^2$ and 20mm sealing line was $57\mu\textrm{m}$. This value is similar to calculated value, $54\mu\textrm{m}$, from built- in edge condition in the finite element method.

  • PDF

A Lubrication Design Optimization of Mechanical Face Seal (미케니컬 페이스 실의 유활 최적설계)

  • Choe, Byeong-Ryeol;Lee, An-Seong;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2989-2994
    • /
    • 2000
  • A mechanical face seal is a tribo-element intended to control leakage of working fluid at the interface of a rotating shaft and its housing. Leakage of working fluid decreases drastically as the clearance between mating seal faces gets smaller. But the very small clearance may result in an increased reduction of seal life because of high wear and heat generation. Therefore, in the design of mechanical face seals a compromise between low leakage and acceptable seal life is important, ant it present a difficult and practical design problem. A fluid film or sealing dam geometry of the seal clearance affects seal lubrication performance very much, and thereby is optimization is one of the main design consideration. in this study the Reynolds equation for the sealing dam of mechanical face seals is numerically analyzed, using the Galerkin finite element method, which is readily applied to various seal geometries, to give lubrication performances, such as opening force, restoring moment, leakage, and axial and angular stiffness coefficients. Then, to improve the seal performance an optimization is performed, considering various design variables simultaneously. For the tested case the optimization ha successfully resulted in the optimal design values of outer and inner seal radii, coning, seal clearance, and balance radius while satisfying all the operation subjected constraints and design variable side-constraints, and improvements of axial and angular stiffness coefficients by 16.8% and 2.4% respectively and reduction of leakage by 38.4% have been achieved.

A Study on Shape Optimization for Seal Groove of Disc Caliper using Finite Element Method and Taguchi's Method (유한요소해석과 다구찌 방법에 의한 디스크 캘리퍼 씰 홈의 형상 최적화에 관한 연구)

  • Kim, Jin-Han;Kim, Soo-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.88-94
    • /
    • 2006
  • A typical disk brake system consists of caliper housing, piston, seal and two pads etc. The configuration of seal groove, dimension of piston and seal, and seal material properties are important ones for brake performance, as these affect the retraction of piston. The rubber seal is designed to perform dual functions of sealing the brake oil at brake-applied and retracting the caliper piston at brake-released. In this paper, the seal stress is analyzed using Finite Element Method and experiment is conducted by Taguchi's Method. We attempt to quantify the critical design factors in the seal groove and evaluate their impact on some of brake performance factors. The investigation obtained from this study can not only enhance the seal groove design optimization, but also reduce product prototype testing and development time.

A Study on the Relationship between Stress Relaxation and Performance of a Lip Seal (응력완화와 립 시일의 성능의 관계에 대한 연구)

  • Yoo, Myung-Ho;Lee, Taek-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.85-91
    • /
    • 2009
  • A lip seal is widely used not only to prevent leakage of fluids from an actuator or a rotating shaft but also to exclude outside substances. Recently, TPU(Thermoplastic Polyurethane), which is one of the sealing materials, has been frequently used due to its excellent mechanical properties and wear resistance. The material constants for finite element analysis through the experiment on stress relaxation are presented. The reaction forces of a shaft as well as the contact pressures of a lip seal under condition before and after stress relaxation using finite element analysis were obtained, The results show that stress relaxation has not a little effect on the performance of a lip seal.

Computer Simulation of the Behavior of Water Seals (워터실 거동의 전산시뮬레이션)

  • Han, Seung-U;Kim, Wan-Du;Lee, Hak-Ju
    • 연구논문집
    • /
    • s.26
    • /
    • pp.25-32
    • /
    • 1996
  • Water seals are used in a washing machine to seal rotating shafts and to prevent the penetration of dust, dirt or water from the outside. The design parameters of water seals, that were the location of the garter spring, the angle of the seal lip, and the interference, were investigated by the computer simulations using the hyperelastic non-linear large deformation finite element analysis code. The maximum contact stress and the distribution of stress on the seal lip were obtained for various type of water seals. The best type among the several investigated seals was selected considering the contact force and the sealing performance.

  • PDF

Numerical Evaluation of Excavation Damage Zone Around Tunnels by Using Voronoi Joint Models (Voronoi 절리모델에 의한 터널 주변 굴착손상권(EDZ)의 해석 사례)

  • Park, Eui-Seob;Martin, C. Derek;Synn, Joong-Ho
    • Tunnel and Underground Space
    • /
    • v.18 no.5
    • /
    • pp.328-337
    • /
    • 2008
  • Quantifying the extent and characteristics of the excavation damage zone(EDZ) is important for the nuclear waste industry which relies on the sealing of underground openings to minimize the risk for radionuclide transport. At AECL's Underground Research Laboratory(URL) the Tunnel Sealing Experiment(TSX) was conducted and the tunnel geometry and orientation relative to the stress field had been selected to minimize the potential for the development of an EDZ. The extent and characteristics of the EDZ was measured using velocity profiling and permeability measurements in radial boreholes. The results from this EDZ characterization are used in this paper to evaluate a modeling fir estimating the extent of the EDZ. The methodology used a damage model formulated in the Universal Distinct Element Code and calibrated to laboratory properties. This model was then used to predict the extent of crack initiation and growth around the TSX tunnel and the results compared to the measured damage. The development of the damage zone in the numerical model was found to be in good agreement with the field measurements.