• Title/Summary/Keyword: seabed seismic reflection data

Search Result 1, Processing Time 0.014 seconds

Removal of Seabed Multiples in Seismic Reflection Data using Machine Learning (머신러닝을 이용한 탄성파 반사법 자료의 해저면 겹반사 제거)

  • Nam, Ho-Soo;Lim, Bo-Sung;Kweon, Il-Ryong;Kim, Ji-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.168-177
    • /
    • 2020
  • Seabed multiple reflections (seabed multiples) are the main cause of misinterpretations of primary reflections in both shot gathers and stack sections. Accordingly, seabed multiples need to be suppressed throughout data processing. Conventional model-driven methods, such as prediction-error deconvolution, Radon filtering, and data-driven methods, such as the surface-related multiple elimination technique, have been used to attenuate multiple reflections. However, the vast majority of processing workflows require time-consuming steps when testing and selecting the processing parameters in addition to computational power and skilled data-processing techniques. To attenuate seabed multiples in seismic reflection data, input gathers with seabed multiples and label gathers without seabed multiples were generated via numerical modeling using the Marmousi2 velocity structure. The training data consisted of normal-moveout-corrected common midpoint gathers fed into a U-Net neural network. The well-trained model was found to effectively attenuate the seabed multiples according to the image similarity between the prediction result and the target data, and demonstrated good applicability to field data.