• Title/Summary/Keyword: sea-level

Search Result 2,669, Processing Time 0.033 seconds

Sea-Level Trend at the Korean Coast

  • Cho, Kwangwoo
    • Journal of Environmental Science International
    • /
    • v.11 no.11
    • /
    • pp.1141-1147
    • /
    • 2002
  • Based on the tide gauge data from the Permanent Service for Meau Sea Level (PSMSL) collected at 23 locations in the Korean coast, the long-term sea-level trend was computed using a simple linear regression fit over the recorded length of the monthly mean sea-level data. The computed sea-level trend was also corrected for the vertical land movement due to post glacial rebound(PGR) using the ICE-4G(VM2) model output. It was found that the PGR-corrected sea-level trend near Korea was 2.310 $\pm$ 2.220 mm/yr, which is higher than the global average at 1.0∼2.0mm/yr, as assessed by the Intergovernmental Panel on Climate Change(IPCC). The regional distribution of the long-term sea-level trend near Korea revealed that the South Sea had the largest sea-level rise followed by the West Sea and East Sea, respectively, supporting the results of the previous study by Seo et al. However, due to the relatively short record period and large spatial variability, the sea-level trend from the tide gauge data for the Korean coast could be biased with a steric sea-level rise by the global warming during the 20th century.

VULNERABILITY OF KOREAN COAST TO THE SEA-LEVEL RISE DUE TO $21^{ST}$ GLOBAL WARMING

  • Cho Kwangwoo;Maeng Jun Ho;Yun Jong-Hwui
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.11a
    • /
    • pp.219-225
    • /
    • 2003
  • The present study intends to assess the long-term steric sea-level change and its prediction, and potential impacts to the sea-level rise due to the 21st global warming in the coastal zone of the Korea in which much socioeconomic activities have been occurred. The analysis of the 23 tide-gauge data near Korea reveals the overall mean sea-level trend of 2.31 mm/yr.In the satellite altimeter data (Topex/Poseidon and ERS), the sea-level trend in the East Sea is 4.6mm/yr. Both are larger than those of the global average value. However, it is quite questionable that the sea-level trends with the tide-gauge data on the neighboring seas of Korea relate to global warming because of the relatively short observation period and large spatial variability. It is also not clear whether the high trend of altimeter data in the East Sea is related to the acceleration of sea level rise in the Sea, short response time of the Sea, natural variability such as decadal variability, short duration of the altimeter. The coastal zone of Korea appears to be quite vulnerable to the 21st sea level rise such that for the I-m sea level rise with high tide and storm surge, the inundation area is 2,643 km2, which is about $1.2\%$ of total area and the population in the risk areas of inundation is 1.255 million, about $2.6\%$ of total population. The coastal zone west of Korea is appeared to be the most vulnerable area compared to the east and south. In the west of the Korea, the North Korea appears to be more vulnerable than South Korea. In order to cope with the future possible impact of sea-level rise to the coastal zone of Korea effectively, it is essential to improve scientific information in the sea-level rise trend, regional prediction, and vulnerability assessment near Korean coast.

  • PDF

Estimation of sea level variations of the Java Sea during the ENSO period using the HYCOM

  • Sofian, Ibnu;Kozai, K.;Ohsawa, T.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.744-747
    • /
    • 2006
  • The sea level of the Java Sea is reproduced using HYbrid Coordinate Ocean Model (HYCOM) setting up in the horizontal grid from $100^{\circ}E$ to $125^{\circ}E$ and from $10^{\circ}S$ to $8^{\circ}N$. The model is initialized by ocean temperature and salinity profiles from Levitus 1998 and forced by the atmospheric field derived from NCEP reanalysis. In this research HYCOM is applied to explain the El $Ni{\tilde{n}}o$ Southern Oscillation (ENSO) impacts on the sea level of the Java Sea. The monthly tide gauge sea level data are produced based on hourly sea level data from 1993 to 1997. Altimeter sea level data are based on weekly merged products between TOPEX/Poseidon and ERS absolute dynamic topography (ADT). The simulated sea level both HYCOM and ADT agree well with the tide gauge sea level. The sea level of the Java Sea is high during the La $Ni{\tilde{n}}a$ period and low during the El $Ni{\tilde{n}}o$ period.

  • PDF

SEA LEVEL VARIATIONS IN THE LONG TERM IN THE EAST SEA OF KOREA

  • Cho, Keun-Han;Kim, Hee-Jong;Lee, Dong-In;Yoon, Hong-Joo
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.37-40
    • /
    • 2007
  • Satellite altimetric data from 1993 to 2006 are used to study sea level variations in the long tenn in the East Sea. The trend of sea level in the East Sea is rising 4.16 mm/yr and indicate that it rose 5.82 cm in 2006 against to 1993. The South Ses is the fastest in the study areas (4.89 mm/yr, 6.84cm) and the Yellow Sea is 4.10 mm/yr and 5.75cm, respectively. The both of Mokho coast and Ulleung island are minimal sea level in March to May and maximal sea level in September to November. For periods above 20.9days, coherences are found to be higher than 95% confidence level, and the phase differences are near zero.

  • PDF

Holocene Sea Level Changes in the Eastern Yellow Sea: A Brief Review using Proxy Records and Measurement Data (황해 동부 연안의 홀로세 해수면 변화: 대리기록과 관측자료를 통한 재검토)

  • Lee, Eunil;Chang, Tae Soo
    • Journal of the Korean earth science society
    • /
    • v.36 no.6
    • /
    • pp.520-532
    • /
    • 2015
  • In order to understand the Holocene sea level changes in the eastern Yellow Sea, the west coast of Korea, and to compare the rates of sea level rise in each period of time, the geological proxy records for pre-instrumental era and measurement data for the present day were combined and analysed. The sea level in the Yellow Sea rose fast with a rate of about 10 mm/yr during the early Holocene, and decelerated down to 1 mm/yr since the mid to late Holocene. The rising rates of sea level in the 20th century were slightly higher than those in the late Holocene. The present-day rates of sea level rise, known as the 'rapid' rise, are in fact much lower or similar, compared to the early to mid Holocene sea levels in the study area. Recent tide-gauge data show that sea level rise in the eastern Yellow Sea has been accelerating toward the 21st century. These rising trends coincide well with global rising patterns in sea level. Additionally, the present-day rising trends of sea level in this study are correlated with increased rates of carbon dioxide concentrations and sea surface temperatures, further indicating a signal to global warming associated with the human effect. Thus, the sea level changes induced by current global warming observed in the eastern Yellow Sea and world's oceans can be considered as 'Anthropocene' sea level changes. The changes in sea level are based on instrumental measurements such as tide-gauges and satellite altimetry, meaning the instrumental era. The Holocene changes in sea level can thus be reconstructed from geological proxy records, whereas the Anthropocene sea-level changes can be solely based on instrumental measurements.

Estimation of Instantaneous Sea Level Using SAR Interferometry

  • Kim, Sang-Wan;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.5
    • /
    • pp.255-261
    • /
    • 2002
  • Strong and coherent radar backscattering signals are observed over oyster sea farms that consist of artificial structures installed on the bottom. We successfully obtained 21 coherent interferograms from 11 JERS-1 SAR data sets even though orbital baselines (up to 2 km) or temporal baselines (up to 1 year) were relatively large. The coherent phases preserved in the sea farms are probably formed by double bouncing from sea surface and the sea farming structures, and consequently they are correlated with tide height (or instantaneous sea level). Phase unwrapping is required to restore the absolute sea level. We show that radar backscattering intensity is roughly correlated with the sea surface height, and utilize the fact to determine the wrapping counts. While the SAR image intensity gives a rough range of absolute sea level, the interferometric phases provide the detailed relative height variations within a limit of $2{\pi}$ (or 15.3 cm) with respect to the sea level at the moment of the master data acquisition. A combined estimation results in an instantaneous sea level. The radar measurements were verified using tide gauge records, and the results yielded a correlation coefficient of 0.96 with an r.m.s. error of 6.0 cm. The results demonstrate that radar interferometry is a promising approach to sea level measurement in the near coastal regions.

Daily Mean Sea Level and Atmospheric Pressure Along the Coasts of the Northwestern Pacific Ocean

  • Oh, Im-Sang;Moon, Il-Ju;Youn, Yong-Hoon
    • Journal of the korean society of oceanography
    • /
    • v.32 no.4
    • /
    • pp.171-180
    • /
    • 1997
  • Daily mean sea level variability and its response to atmospheric pressure along the coasts of the northwestern Pacific Ocean are investigated. Daily values of sea level and atmospheric pressure covering the period 1976-1986 from 72 stations are analyzed. The sea level and the air pressure in all the data set have a definite seasonal signal, and higher frequency oscillations at time scales of several days to several weeks are also observed. Among the short-period oscillations of sea level with periods shorter than six months, the period of around 3 or 4 months is dominant in most study stations. According to the statistical analysis of sea level and air pressure, the length scale of sea level variability is smaller than that of air pressure for the present study area. The overall variability of sea level is found to be the smallest around Hokkaido, Japan and the largest in the China coasts. Large short-period (< 6 months) sea level variability is found in the southern coasts of China and Hokkaido, and large long-period (> 6 months) variability in the southern coasts of Japan and Korea along Tsushima Current and Kuroshio. The patterns of air pressure are very similar to those of sea level. The air pressure field is found to account for 31% of the overall sea level variability in the study area. Conside.ins the fact that the results (40%) of Pang and Oh (1995) were obtained through monthly sea level, the present result implies that the short-period sea level variability is less affected by air pressure. Generally the sea level response to air pressure are found to be isostatic, but significantly nonisostatic for the periods around 4 months and for those of 2 to 4 days. In particular, nonisostatic response for higher frequencies seem to be due to the restrictions to water transport necessary for barometric responsein the Korea Strait.

  • PDF

Trend of Sea Level Change Along the Coast of Korean Peninsula

  • An Byoung Woong;Kang Hyo Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.6
    • /
    • pp.803-808
    • /
    • 1999
  • Trend of sea level change has been analysed by using the tidal data gathered at the 12 tide stations along the coast of Korean peninsula. Analysis and prediction of the sea level change were performed by Principal Component Analysis (PCA). For the period of 20 years from 1976 to 1995, the trend generally shows a rising pattern such as 0.22 cm/yr, 0.29 cm/yr, and 0.59 cm/yr along the eastern, southern, and western coast of Korea, respectively. On the average the sea level around the Korean peninsula seems to be rising at a rate of 0.37 cm/yr. Adopting the average rate to the sea level prediction model proposed by EPA (Titus and Narrayanan, 1995), the sea level may be approximately 50$\~$60 cm higher than the present sea level by the end of the next century.

  • PDF

Sea level observations in the Korean seas by remote sensing

  • Yoon, Hong-Joo
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.1
    • /
    • pp.58-60
    • /
    • 2004
  • Sea level variations and sea surface circulations in the Korean seas were observed by Topex/Poseidon altimeter data from 1993 through 1997. In sea level variations, the West and South Sea showed relatively high variations with comparison to the East Sea. Then, the northern and southern area in the West Sea showed the range of 20∼30cm and 18∼24cm, and the northern west of Jeju island and the southern west of Tsushima island in the South Sea showed the range of 15∼20cm and 10∼15cm, respectively. High variations in the West Sea were results to the inflow in sea surface of Yellow Sea Warm Current (YSWC) and bottom topography. Sea level variations in the South Sea were due to two branch currents (Jeju Warm Current and East Korea Warm Current) originated from Kuroshio Current (KC). In sea surface circulations, there existed remarkably three eddies circulations in the East Sea that are mainly connected with North Korea Cold Current (NKCC), East Korea Warm Current (EKWC) and Tushima Warm Current (TWC). Their eddies are caused basically to the influence of currents in sea surface circulations; Cyclone (0.03 cm/see) in the Wonsan bay off shore with NKCC, and anticyclone (0.06 cm/see) in the southwestern area of Ulleung island with EKWC, and cyclone (0.01 cm/see) in the northeastern area of Tushima island with TWC, respectively.

Sea level observations in the Korean seas by remote sensing

  • Yoon, Hong-Joo;Byon, Hye-Kyong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.879-881
    • /
    • 2003
  • Sea level variations and sea surface circulations in the Korean seas were observed by Topex/Poseidon altimeter data from 1993 through 1997. In sea level variations, the West and South Sea showed relatively high variations with comparison to the East Sea. Then, the northern and southern area in the West Sea showed the range of 20${\sim}$30cm and 18${\sim}$24cm, and the northern west of Jeju island and the southern west of Tsushima island in the South Sea showed the range of 15${\sim}$20cm and 10${\sim}$15cm, respectively. High variations in the West Sea was results to the inflow in sea surface of Yellow Sea Warm Current (YSWC) and bottom topography. Sea level variations in the South Sea was due to two branch currents(Jeju Warm Current and East Korea Warm Current) originated from Kuroshio Current (KC). In sea surface circulations, there existed remarkably three eddies circulations in the East Sea that are mainly connected with North Korea Cold Current (NKCC), East Korea Warm Current (EKWC) and Tushima Warm Current(TWC). Their eddies are caused basically to the influence of currents in sea surface circulations; Cyclone (0.03 cm/sec) in the Wonsan bay off shore with NKCC, and anticyclone (0.06 cm/sec) in the southwestern area of Ulleung island with EKWC, and cyclone (0.01 cm/sec) in the northeastern area of Tushima island with TWC, respectively.

  • PDF