• Title/Summary/Keyword: sea surface winds

Search Result 130, Processing Time 0.021 seconds

Characteristics of Surface Ozone in a Valley Area Located Downwind from Coastal Cities under Sea-breeze Condition: Seasonal Variation and Related Winds (연안 대도시 해풍 풍하측 계곡지역의 지표오존 분포 특성: 계절변화와 바람과의 관계)

  • Kang, Jae-Eun;Oh, In-Bo;Song, Sang-Keun;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.21 no.2
    • /
    • pp.153-163
    • /
    • 2012
  • The seasonal variations of ozone ($O_3$) concentrations were investigated with regard to the relationship between $O_3$ and wind distributions at two different sites (Jung Ang (JA): a semi-closed topography and Seo Chang (SC): a closed topography) within a valley city (Yangsan) and their comparison between these sites (JA and SC) and two non-valley sites (Dae Jeo (DJ) and Sang Nam (SN)) located downwind from coastal cities (Busan and Ulsan). This analysis was performed using the data sets of hourly $O_3$ concentrations, meteorological factors (especially, wind speed and direction), and those on high $O_3$ days exceeding the 8-h standard (60 ppb) during 2008-2009. In summer and fall (especially in June and October), the monthly mean values of the daily maximum $O_3$ concentrations and the number of high $O_3$ days at JA (and SC) were relatively higher than those at DJ (and SN). The increase in daytime $O_3$ concentrations at JA in June was likely to be primarily impacted by the transport of $O_3$ and its precursors from the coastal emission sources in Busan along the dominant southwesterly winds (about 5 m/s) under the penetration of sea breeze condition, compared to other months and sites. Such a phenomenon at SC in October was likely to be mainly caused by the accumulation of $O_3$ and its precursors due to the relatively weak winds under the localized stagnant weather condition rather than the contribution of regional transport from the emission sources in Busan and Ulsan.

A Study on Cold Water Damage to Marine Culturing Farms at Guryongpo in the Southwestern Part of the East Sea (경북 구룡포 해역에서의 냉수 발생과 어장 피해)

  • Lee, Yong-Hwa;Shim, JeongHee;Choi, Yang-ho;Kim, Sang-Woo;Shim, Jeong-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.731-737
    • /
    • 2016
  • To understand the characteristics and strength of the cold water that has caused damage to marine-culturing farms around Guryongpo, in the southwestern part of Korea, surface and water column temperatures were collected from temperature loggers deployed at a sea squirt farm during August-November 2007 and from a Real-time Information System for Aquaculture environment operated by NIFS (National Institute of Fisheries Science) during July-August 2015 and 2016. During the study period, surface temperature at Guryongpo decreased sharply when south/southwestern winds prevailed (the 18-26th of August and 20-22nd of September 2007 and the 13-15th of July 2015) as a result of upwelling. However, the deep-water (20-30m) temperature increased during periods of strong north/northeasterly winds (the 5-7th and 16-18th of September 2007) as a result of downwelling. Among the cold water events that occurred at Guryongpo, the mass death of cultured fish followed strong cold water events (surface temperatures below $10^{\circ}C$) that were caused by more than two days of successive south/southeastern winds with maximum speeds higher than 5 m/s. A Cold Water Index (CWI) was defined and calculated using maximum wind speed and direction as measured daily at Pohang Meteorological Observatory. When the average CWI over two days ($CWI_{2d}$) was higher than 100, mass fish mortality occurred. The four-day average CWI ($CWI_{4d}$) showed a high negative correlation with surface temperature from July-August in the Guryongpo area ($R^2=0.5$), suggesting that CWI is a good index for predicting strong cold water events and massive mortality. In October 2007, the sea temperature at a depth of 30 m showed a high fluctuation that ranged from $7-23^{\circ}C$, with frequency and spectrum coinciding with tidal levels at Ulsan, affected by the North Korean Cold Current. If temperature variations at the depth of fish cages also regularly fluctuate within this range, damage may be caused to the Guryongpo fish industry. More studies are needed to focus on this phenomenon.

PROBABILITY DISTRIBUTION OF SURFACE WAVE SLOPE DERIVED USING SUN GLITTER IMAGES FROM GEOSTATIONARY METEROLOGICAL SATELLITE AND SURFACE VECTOR WINDS FROM SCATTEROMETERS

  • Ebuchi, Naoto;Kizu, Shoichi
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.615-620
    • /
    • 2002
  • Probability distribution of the sea surface slope is estimated using sun glitter images derived from visible radiometer on Geostationary Meteorological Satellite (GMS) and surface vector winds observed by spaceborne scatterometers. The brightness of the visible images is converted to the probability of wave surfaces which reflect the sunlight toward GMS in grids of 0.25 deg $\times$ 0.25 deg. Slope and azimuth angle required for the reflection of the sun's ray toward GMS are calculated for each grid from the geometry of GMS observation and location of the sun. The GMS images are then collocated with surface wind data observed by three scatterometers. Using the collocated data set of about 30 million points obtained in a period of 4 years from 1995 to 1999, probability distribution function of the surface slope is estimated as a function of wind speed and azimuth angle relative to the wind direction. Results are compared with those of Cox and Munk (1954a, b). Surface slope estimated by the present method shows narrower distribution and much less directivity relative to the wind direction than that reported by Cox and Munk. It is expected that their data were obtained under conditions of growing wind waves. In general, wind waves are not always developing, and slope distribution might differ from the results of Cox and Munk. Most of our data are obtained in the subtropical seas under clear-sky conditions. This difference of the conditions may be the reason for the difference of slope distribution.

  • PDF

Ocean Surface Winds Over the Seas Around Korea Measured by the NSCAT(NASA Scatterometer) (NSCAT (NASA Scatterometer)에 의한 한국근해의 해상풍)

  • 이동규
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.1
    • /
    • pp.37-52
    • /
    • 1998
  • The NSCAT(NASA Scatterometer) carried by the japanese Advanced Earth Observing Satellite(ADEOS) was the first high resolution(25 km) device for the direct wind measurement over the ocean. Even it was ceased to operate in lune of 1977 because of the power failure, it gave the first opportunity to the marine meteorologists to study the direct measured ocean wind during its 9 months of operation, especially around Korea. This study is to show monthly mean ocean wind and wind stress curl fields around Korea from January, 1997 to June, 1997. Mean ocean winds in January are predominantly northwesterly and the strongest wind(12 m/s) is found near Vladivostok. The winds in the western East Sea are strongly inf1uenced by the mountain range in Korea and these topographically influenced winds make about five times larger wind stress curl fields than previous estimates based on the weather maps. The calculation of Sverdrup transport in the East Sea shows the possibility of the directional change of the East Korean Cold Current from southward to northward direction caused by the winter wind. The downwelling area near North Korea has maximum estimated speed of 45 m in january and this wind induced downwelling makes good condition for the formation of Intermediate East Sea Water together with vigorous mixing by the strong wind.

Long-term and Real-time Monitoring System of the East/Japan Sea

  • Kim, Kuh;Kim, Yun-Bae;Park, Jong-Jin;Nam, Sung-Hyun;Park, Kyung-Ae;Chang, Kyung-Il
    • Ocean Science Journal
    • /
    • v.40 no.1
    • /
    • pp.25-44
    • /
    • 2005
  • Long-term, continuous, and real-time ocean monitoring has been undertaken in order to evaluate various oceanographic phenomena and processes in the East/Japan Sea. Recent technical advances combined with our concerted efforts have allowed us to establish a real-time monitoring system and to accumulate considerable knowledge on what has been taking place in water properties, current systems, and circulation in the East Sea. We have obtained information on volume transport across the Korea Strait through cable voltage measurements and continuous temperature and salinity profile data from ARGO floats placed throughout entire East Sea since 1997. These ARGO float data have been utilized to estimate deep current, inertial kinetic energy, and changes in water mass, especially in the northern East Sea. We have also developed the East Sea Real-time Ocean Buoy (ESROB) in coastal regions and made continual improvements till it has evolved into the most up-to-date and effective monitoring system as a result of remarkable technical progress in data communication systems. Atmospheric and oceanic measurements by ESROB have contributed to the recognition of coastal wind variability, current fluctuations, and internal waves near and off the eastern coast of Korea. Long-tenn current meter moorings have been in operation since 1996 between Ulleungdo and Dokdo to monitor the interbasin deep water exchanges between the Japanese and Ulleung Basins. In addition, remotely sensed satellite data could facilitate the investigation of atmospheric and oceanic surface conditions such as sea surface temperature (SST), sea surface height, near-surface winds, oceanic color, surface roughness, and so on. These satellite data revealed surface frontal structures with a fairly good spatial resolution, seasonal cycle of SST, atmospheric wind forcing, geostrophic current anomalies, and biogeochemical processes associated with physical forcing and processes. Since the East Sea has been recognized as a natural laboratory for global oceanic changes and a clue to abrupt climate change, we aim at constructing a 4-D continuous real-time monitoring system, over a decade at least, using the most advanced techniques to understand a variety of oceanic processes in the East Sea.

Reconstruction and Validation of Gridded Product of Wind/Wind-stress derived by Satellite Scatterometer Data over the World Ocean and its Impact for Air-Sea Interaction Study

  • Kutsuwada, Kunio;Koyama, Makoto;Morimoto, Naoki
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.33-36
    • /
    • 2007
  • We have persistently constructed gridded products of surface wind/wind stress over the world ocean using satellite scatterometer (ERS and Qscat). They are available for users as the Japanese Ocean Flux data sets with Use of Remote sensing Observation (J-OFURO) data together with heat flux components. Recently, a new version data of the Qscat/SeaWinds based on improved algorithm for rain flag and high wind-speed range have been delivered, and allowed us to reconstruct gridded product with higher spatial resolution. These products are validated by comparisons with in-situ measurement data by mooring buoys such as TAO/TRITON, NDBC and the Kuroshio Extension Observation (KEO) buoys, together with numerical weather prediction model products such as the NCEP-1 and 2. Results reveal that the new product has almost the same magnitude in mean difference as the previous version of Qscat product and much smaller than the NCEP-1 and 2. On the other hand, it is slightly larger root-mean-square (RMS) difference than the previous one and NCEPs for the comparison using the KEO buoy data. This may be due to the deficit of high wind speed data in the buoy measurement. The high resolution product, together with sea surface temperature (SST) one, is used to examine a new type of relationship between the lower atmosphere and upper ocean in the Kuroshio Extension region.

  • PDF

Paleo-latitude of the Intertropical Convergence Zone in the Northeast Pacific during Late Cenozoic (신생대 후기 북동태평양 지역 적도수렴대의 위치변화)

  • Hyeong, Ki-Seong;Kim, Ki-Hyune;Chi, Sang-Bum;Yoo, Chan-Min
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.245-253
    • /
    • 2004
  • The Intertropical Convergence Zone (ITCZ), where the southeast and northeast trade winds converge, is the effective climatological barrier that separates the southern and northern hemispheres in dust budget. Asian and N. American dusts dominate in fhe Pacific north of the ITCZ, while Central and S. American dust prevails south of the ITCZ. In order to understand the nature of latitudinal and depth-related variations of mineral composition in terms of relative position to the ITCZ, deep-sea core sediments were collected from $9^{\circ}N$ to $17^{\circ}N$ at a $2^{\circ}N$ interval along the $131.5^{\circ}W$ meridian and analyzed for mineral composition. The amount of illite in surface sediments decreases gradually from 65% at $17^{\circ}N\;to\;31^{\circ}N$ to 31% at 9f. In contrast, smectite increases from 11% to 56% southward. The observed mineralogical variation toward the ITCZ is attributed to the increased supply of volcaniclastic material transported via the southeast trade winds from the Central and South America source regions. Smectite-illite transition, a phenomenon that the amount of smectite increases over illite, occurs at around $10^{\circ}N$, the northern margin of the ITCZ. This result indicates that the change in latitudinal position of the ITCZ in geologic past could be recorded as a form of smectite-illite transition in deep-sea cores. The studied cores show down-core variation of mineral composition from illite-rich at the surface to smectite-rich clay suit at depths, similar to the latitudinal variation. The smectite-illite transitions observed in these cores are likely the records of changes in latitudinal position of the ITCZ. The depth and age of smectite-illite transition is getting shallower and younger toward equator, implying that the ITCZ was located farther north during late Tertiary and has shifted southward to the present position of $5^{\circ}N-10^{\circ}N$.

Evidences of Intermittent Wind-Induced Flow in the Yellow Sea obtained from AVHRR SST Data

  • Seung, Young Ho;Yoon, Jong-Hyuk;Lim, Eun-Pyo
    • Ocean and Polar Research
    • /
    • v.34 no.4
    • /
    • pp.395-401
    • /
    • 2012
  • Ten-year AVHRR sea surface temperature data obtained in the Yellow Sea are put into EOF analyses. Temperature variation is predominated by the first mode which is associated with the seasonal fluctuation of temperature with annual range decreasing with the bottom depth. Since such a strong annual signal may mask the upwind or downwind flows occurring intermittently during the winter, only the data obtained during this season are put into EOF analyses. Every winter shows similar results. The first mode, explaining more than 90% of total variance, appears to be a part of the seasonal variation of temperature mentioned above. In the second mode, the time coefficient is well correlated with northerly winds to which the responses of the trough and shallow coastal areas are opposite to each other. A simple theoretical consideration suggests the following physical explanation: The northerly wind stress anomaly creates an upwind (downwind) flow over the trough (coastal) areas, which then induces a temperature increase (decrease) by advection of heat, and vice versa for the southerly wind stress anomaly. Hence, this paper provides further evidence of the intermittent upwind or downwind flows occurring in the Yellow Sea every winter.

Wind Stress Distribution and Its Application to the Upper-layer Structure in the East Sea of Korea (한국동해의 바람응력 분포와 상층구조에 대한 적용)

  • Na, Jung Yul
    • 한국해양학회지
    • /
    • v.23 no.3
    • /
    • pp.97-109
    • /
    • 1988
  • The wind stress and the wind-stress curl over the East Sea of Korea are computed from the ship-observed wind data by the FRDA. In order to emphasize the role of the wind in determining the upper-layer structure, rather persistent and strong winds are selected based on the wind-rose data. The monthly averaged wind stresses are comparable in size with the average value over the Japan Sea. But the monthly averaged magnitude of the wind-stress curl is very large compared to the one over the Japan Sea. This may be due to the spatial variation of the wind speeds influenced by the local orography. The wind-driven upper-layer thickness over the East Sea suggests that the site of deep upper layer indeed exists regardless of season but the position does not appear to be fixed. The convergence of warm surface water driven by the wind could be referred as the warm core.

  • PDF

Dynamically Induced Anomalies of the Japan/East Sea Surface Temperature

  • Trusenkova, Olga;Lobanov, Vyacheslav;Kaplunenko, Dmitry
    • Ocean and Polar Research
    • /
    • v.31 no.1
    • /
    • pp.11-29
    • /
    • 2009
  • Variability of sea surface temperature (SST) in the Japan/East Sea (JES) was studied using complex empirical orthogonal function (CEOF) analysis. Two daily data sets were analyzed: (1) New Generation 0.05o-gridded SST from Tohoku University, Japan (July 2002-July 2006), and (2) 0.25o-gridded SST from the Japan Meteorological Agency (October 1993-November 2006). Linkages with wind stress curl were revealed using 6-h 1o-gridded surface zonal and meridional winds from ancillary data of the Sea- WiFS Project, a special National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) product (1998-2005). SST anomalies (SSTA) were obtained by removing the seasonal signal, estimated as the leading mode of the CEOF decomposition of the original SST. Leading CEOF modes of residual SSTA obtained from both data sets were consistent with each other and were characterized by annual, semiannual, and quasi-biennial time scales estimated with 95% statistical significance. The Semiannual Mode lagged 2 months behind the increased occurrence of the anticyclonic (AC) wind stress curl over the JES. Links to dynamic processes were investigated by numerical simulations using an oceanic model. The suggested dynamic forcings of SSTA are the inflow of subtropical water into the JES through the Korea Strait, divergence in the surface layer induced by Ekman suction, meridional shifts of the Subarctic Front in the western JES, AC eddy formation, and wind-driven strengthening/weakening of large-scale currents. Events of west-east SSTA movement were identified in July-September. The SSTA moved from the northeastern JES towards the continental coast along the path of the westward branch of the Tsushima Current at a speed consistent with the advective scale.