• Title/Summary/Keyword: sea level rise

Search Result 245, Processing Time 0.039 seconds

How does Land respond to Sea-level Changes\ulcorner

  • Jeon, Dongchull
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.101-103
    • /
    • 1995
  • Beaches and low-tying coastal areas have been seriously eroding at many places along the global coastlines during the past century. The coastal erosion problem during the next century is said to be potentially worse due to the sea-level rise by global warming. Coastal erosion, whatever the time scale is, is the result as a response of land to oceanic, atmospheric, and human impacts. (omitted)

  • PDF

Influence of Water Depth on Climate Change Impacts on Caisson Sliding of Vertical Breakwater (직립방파제의 케이슨 활동에 미치는 기후변화영향에 대한 수심의 효과)

  • Kim, Seung-Woo;Kim, So-Yeon;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.3
    • /
    • pp.179-188
    • /
    • 2012
  • Performance analyses of vertical breakwaters were conducted for fictitiously designed breakwaters for various water depths to analyze the influence of climate change on the structures. The performance-based design method considering sea level rise and wave height increase due to climate change was used for the performance analysis. One of the problems of the performance-based design method is the large calculation time of wave transformation. To overcome this problem, the SWAN model combined with artificial neural network was used. The significant wave height and principal wave direction at the breakwater site are quickly calculated by using a trained neural network with inputs of deepwater significant wave height and principal wave direction, and tidal level. In general, structural stability becomes low due to climate change impacts, but the trend of stability is different depending on water depth. Outside surf zone, the influence of wave height increase becomes more significant, while that of sea level rise becomes negligible, as water depth increases. Inside surf zone, the influence of both wave height increase and sea level rise diminishes as water depth decreases, but the influence of wave height increase is greater than that of sea level rise. Reinforcement and maintenance policies for vertical breakwaters should be established with consideration of these results.

Study on Development of Digital Ocean Information Contents for Climate Change and Environmental Education : Focusing on the 3D Simulator Experiencing Sea Level Rise (기후변화 환경교육을 위한 디지털 해양정보 콘텐츠 개발 방안 연구 - 해수면 상승 체험 3D 시뮬레이터를 중심으로 -)

  • Jin-Hwa Doo;Hong-Joo Yoon;Cheol-Young Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.953-964
    • /
    • 2023
  • Climate change is undeniably the most urgent challenge that humanity faces today. Despite this, the level of public awareness and understanding of climate change remains insufficient, indicating a need for more proactive education and the development of supportive content. In particular, it is crucial to intensify climate change education during elementary and secondary schooling when values and ethical consciousness begin to form. However, there is a significant lack of age-appropriate, experiential educational content. To address this, our study has developed an innovative 3D simulator, enabling learners to indirectly experience the effects of climate change, specifically sea-level rise. This simulator considers not only sea-level rise caused by climate change but also storm surges, which is a design based on the analysis of long-term wave observation big data. To make the simulator accessible and engaging for students, we utilized the 'Unity' game engine. We further propose using this simulator as a part of a comprehensive educational program on climate change.

Estimation of Peak Water Level Based on Observed Records and Assessment of Inundation in Coastal Area - A Case Study in Haeundae, Busan City - (관측자료에 기반한 미래 해수위 예측 및 연안지역 침수위험면적 분석 - 부산시 해운대구 일대를 대상으로 -)

  • Ahn, Saekyul;Lee, Dongkun
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.6
    • /
    • pp.445-456
    • /
    • 2017
  • For impact assessment of inundation in coastal area due to sea level rise (SLR), model for estimating future peak water level was constructed using observed mean sea level (MSL), storm surge level (SSL) data and calculated tide level (TL) data. Based on time series analysis and quadratic polynomial model for SLR and Monte-Carlo simulation for IC, SSL and TL, 100-year return peak water level is expected to be 2.3, 2.6, 2.8m, respectively (each corresponding to year 2050, 2080, 2100). Further analysis on future potential inundation area showed U-dong, Yongho-dong, Songjeong-dong, Jaesong-dong to be at high risk.

Change of Nearshore Random Waves in Response to Sea-level Rise (해수면 상승에 따른 연안 지역 불규칙파의 변화)

  • Cheon, Se-Hyeon;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.4
    • /
    • pp.244-254
    • /
    • 2013
  • In this study, a method has been developed for estimating the change of nearshore random waves in response to sea-level rise, by extending the method proposed for regular waves by Townend in 1994. The relative changes in wavelength, refraction coefficient, shoaling coefficient, and wave height for random waves are presented as functions of relative change in water depth. The changes in wavelength and refraction coefficient are calculated by using the significant wave period and principal wave direction in the regular-wave formulas. On the other hand, the changes in shoaling coefficient and wave height are calculated by using the formulas proposed for shoaling and transformation of random waves in the nearshore area including surf zone. The results are proposed in the form of both formulas and graphs. In particular, the relative change in wave height is compared with the result for regular waves.