• Title/Summary/Keyword: sea bottom correction

Search Result 22, Processing Time 0.019 seconds

A Case Study of Sea Bottom Detection Within the Expected Range and Swell Effect Correction for the Noisy High-resolution Air-gun Seismic Data Acquired off Yeosu (잡음이 포함된 여수근해 고해상 에어건 탄성파 탐사자료에 대한 예상 범위에서의 해저면 선정 및 너울영향 보정 사례)

  • Lee, Ho-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.116-131
    • /
    • 2019
  • In order to obtain high-quality high-resolution marine seismic data, the survey needs to be carried out at very low-sea condition. However, the survey is often performed with a slight wave, which degrades the quality of data. In this case, it is possible to improve the quality of seismic data by detecting the exact location of the sea bottom signal and eliminating the influence of waves or swells automatically during data processing. However, if noise is included or the sea bottom signal is weakened due to sea waves, sea bottom detection errors are likely to occur. In this study, we applied a method reducing such errors by estimating the sea bottom location, setting a narrow detection range and detecting the sea bottom location within this range. The expected location of the sea bottom was calculated using previously detected sea bottom locations for each channel of multi-channel data. The expected location calculated in each channel is also compared and verified with expected locations of other channels in a shot gather. As a result of applying this method to the noisy 8-channel high-resolution air-gun seismic data acquired off Yeosu, the errors in selecting the strong noise before sea bottom or the strong subsurface reflected signal after the sea bottom signal are remarkably reduced and it is possible to produce the high-quality seismic section with the correction of ~ 2.5 m swell effect.

Swell Effect Correction for the High-resolution Marine Seismic Data (고해상 해저 탄성파 탐사자료에 대한 너울영향 보정)

  • Lee, Ho-Young;Koo, Nam-Hyung;Kim, Wonsik;Kim, Byoung-Yeop;Cheong, Snons;Kim, Young-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.240-249
    • /
    • 2013
  • The seismic data quality of marine geological and engineering survey deteriorates because of the sea swell. We often conduct a marine survey when the swell height is about 1 ~ 2 m. The swell effect correction is required to enhance the horizontal continuity of seismic data and satisfy the resolution less than 1 m. We applied the swell correction to the 8 channel high-resolution airgun seismic data and 3.5 kHz subbottom profiler (SBP) data. The correct sea bottom detection is important for the swell correction. To detect the sea bottom, we used maximum amplitude of seismic signal around the expected sea bottom, and picked the first increasing point larger than threshold value related with the maximum amplitude. To find sea bottom easily in the case of the low quality data, we transformed the input data to envelope data or the cross-correlated data using the sea bottom wavelet. We averaged the picked sea bottom depths and calculated the correction values. The maximum correction of the airgun data was about 0.8 m and the maximum correction of two kinds of 3.5 kHz SBP data was 0.5 m and 2.0 m respectively. We enhanced the continuity of the subsurface layer and produced the high quality seismic section using the proper methods of swell correction.

Swell Effect Correction of Sub-bottom Profiler Data with Weak Sea Bottom Signal (해저면 신호가 약한 천부해저지층 탐사자료의 너울영향 보정)

  • Lee, Ho-Young;Koo, Nam-Hyung;Kim, Wonsik;Kim, Byoung-Yeop;Cheong, Snons;Kim, Young-Jun;Son, Woohyun
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.181-196
    • /
    • 2015
  • A 3.5 kHz or chirp sub-bottom profiling survey is widely used in the marine geological and engineering purpose exploration. However, swells in the sea degrade the quality of the survey data. The horizontal continuity of profiler data can be enhanced and the quality can be improved by correcting the influence of the swell. Accurate detection of sea bottom location is important in correcting the swell effect. In this study, we tried to pick sea bottom locations by finding the position of crossing a threshold of the maximum value for the raw data and transformed data of envelope or energy ratio. However, in case of the low-quality data where the sea bottom signals are not clear due to sea wave noise, automatic sea bottom detection at the individual traces was not successful. We corrected the mispicks for the low quality data and obtained satisfactory results by picking a sea bottom within a range considering the previous average of sea bottom, and excluding unreliable big-difference picks. In case of trace by trace picking, fewest mispicks were found when using energy ratio data. In case of picking considering the previous average, the correction result was relatively satisfactory when using raw data.

Dead Zone Correction for Abundance Estimation of Demersal Fish by Acoustic Method (저서어자원량의 음향추정에 있어서 해저 데드존의 보정에 관한 연구)

  • 황두진
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.3
    • /
    • pp.202-209
    • /
    • 2000
  • In order to estimate demersal fishes using acoustic echo sounders and echo integrators, we consider several problems that are accurate bottom detection, optimum bottom offset and dead zone. The dead zone where no fish detection are summed distance resolution by the half pulse length of transmitted pulse and beam angle above the seabed. This paper has considered the dead-zone correction method to be technically correct for survey of demersal fishes. A comparison between near-bottom SV profiles acquired in Funka Bay, Hokkaido, of Japan, the East China Sea and the Yellow Sea, of Korea, with before and after the bottom correction, shows that the SV obtained with after the bottom correction is 2∼3dB higher than before the bottom correction in Funka Bay, and 17dB higher in East China Sea, too.

  • PDF

Parameter analysis for gas hydrate data of East sea using Geobit (지오빗을 이용한 동해 가스하이드레이트 탄성파 자료처리 매개변수 분석)

  • Kim, Young-Wan;Jang, Seong-Hyung;Kim, Hyun-Tae;Yoon, Wang-Joong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.377-381
    • /
    • 2006
  • A seismic survey for gas hydrate have performed over the East sea by the KIGAM since 1997. General indicator of gas hydrate in seismic data is commonly inferred from the BSR(Bottom Simulating Reflector) that occurred parallel to the sea floor, amplitude decrease at the top of the BSR, amplitude blanking at the bottom of the BSR, decrease of the interval velocity and the reflection phase reversal at the BSR. In this paper we had analyzed optimum parameters of the field data to detect the 9as hydrate. Shot delay correction is applied 95ms, spherical divergence correction is applied velocity library 3, bandpass filter is applied 25-30-115-120Hz deconvolution operator length is applied 60ms, lag is 6ms and accurate velocity analysis NMO correction, stack is performed. Geobit 2.11.0 developed by the KIGAM was used for all data processing. Processing results say that the BSR occurred parallel to the sea floor were shown at 3,150m/s of two way travel time from the sea floor through shot point 5,000-5,610, and identified the interval velocity decrease around BSR and the reflection phase reversal corresponding to the reflection at the sea floor.

  • PDF

A Correction Method of the Error in the Survey of Topography Using an Ultrasound Altitude Sonar (초음파 고도계를 이용한 지형지물 측정에 있어서의 잡음에 의한 오차 보정 방법)

  • Kim, Sea-Moon;Choi, Jong-Su;Lee, Chong-Moo;Hong, Sup
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.26-31
    • /
    • 2001
  • In order to measure the distance from the bottom in the ocean we use ultrasound altitude sonars. The manganese nodule pick-up device developed by KRISO is also using an altitude sonar to control the gap between the pick-up head and sea bottom. This paper describes the performance of the altitude sonar by an experimental method. The experiment was performed with four ground models in a small basin, Manganese nodule models and water-bentonite mixture was used for setting up the ground models. Buttorworth filter was applied to remove the noise caused by a servo motor and its controller. The results show that the altitude sonar gives a good estimation of the types and slopes of the bottom as well as the distance.

  • PDF

Development of Simplified Formulae for Added Mass of a 2-D Floating Body with a Semi-Circle Section in a Finite Water Depth (유한 수심에서 반원형 부유체의 부가질량계수 약산식 개발)

  • Koo, Weoncheol;Kim, Jun-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.80-84
    • /
    • 2013
  • This study is to develop the simplified formulae for added mass coefficient of a 2-D floating body with a semi-circle section in a finite water depth. The semi-circle floating body may represent a simplified midship section transformed by Lewis form, which can be used for the ship motion analysis by strip theory. Since the added mass coefficient varies with motion frequencies and sea bottom effect, the correction factor representing the effect of water depth and frequencies is developed for accurate prediction of added mass. Using a two-dimensional numerical wave tank (NWT) technique based on the boundary element method (BEM) including sea bottom boundary the reference values of added mass are calculated to develop the correction factor. For verification and effectiveness of the formulae, the predicted added mass coefficients for various frequencies and water depth ratios are compared with the calculated values from NWT technique.

Backscatter Data Processing of Multibeam Echo-sounder (300 kHz) Considering the Actual Bottom Slope (지형 경사를 고려한 다중빔 음향측심기(300 kHz) 후방산란 자료 처리에 관한 연구)

  • Kim, Tae-Heon;Lee, Jeong-Min;Park, Soo-Chul
    • Economic and Environmental Geology
    • /
    • v.48 no.5
    • /
    • pp.379-390
    • /
    • 2015
  • Multibeam backscatter strength is dependent not only on seafloor sediment facies but also on changed incidence angle due to the actual bottom slope. Therefore, the correction for actual bottom slope should be considered before the analysis of backscatter strength. This paper demonstrates the backscatter correction technique for the actual incidence angle and ensonified area. The target area is a part of the eastern Yellow Sea with water depths of 46~55 m. The area is located between the sand ridges and covered by large dunes with various bottom slopes. The dunes usually have the gentle slopes of about $1{\sim}3^{\circ}$, but show some steep slopes of $5{\sim}15^{\circ}$ on the crest. The backscatter strength values on the crest range from -34 to -23 dB, assuming that the bottom is flat. However, this study shows that the backscatter strength range was somewhat reduced (-32~-25 dB) after correction for actual bottom slope. In addition, the backscatter imagery was significantly improved; high and low backscatter strength values on the crest due to the actual bottom slope were normalized. The results demonstrate that the correction technique in this study is an effective tool for processing backscatter strength.

Magnetic anomaly in the southern part of the Yellow Sea (서해남부해역의 지자기 이상대 해석)

  • Kim, Sung-Bae;Choi, Sung-Ho;Suh, Man-Cheol
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.85-92
    • /
    • 2008
  • National Oceanographic Research Institute is carrying out an oceanographic survey for the entire sea areas around Korean Peninsula annually starting with the East Sea from 1996 by establishing a national oceanographic basic map survey plan for the sea areas under the jurisdiction of Korea, so this paper used the oceanographic geomagnetism data measured at the southern area of the Yellow Sea using 'Hae Yang 2000' in 1999, aiming at clarifying the cause of geomagnetic abnormality zone during the course of treating and analyzing the geomagnetic data. For treatment of magnetic data, we obtained electromagnetic force values and geomagnetic abnormality values around the investigated sea area through a process of searching and removal of bad data, correction of sensor positions, correction of magnetic field effects around the hull, correction of diurnal variation, normal correction, correction of cross point errors, etc. The electromagnetic force distribution around the investigated sea area was $49000\;{\sim}\;51600\;nT$, which is judged to be within the normal electromagnetic force intensity distribution range around the Yellow Sea. The isodynamic lines are distributed in Northeast-Southwest direction, and electromagnetic force values are increasing toward the northwest. The result of comparing the magnetic abnormality around the sea area among $124^{\circ}$ 49' 48" E, $35^{\circ}$ 10' 48" N $\sim$ $125^{\circ}$ 7' 48" E, and $35^{\circ}$ 33' 00" N sections with the elastic wave cross section and the result of modeling coincide well with the underground geological structure clarified from the existing elastic wave survey cross section. Therefore, it is judged that the distribution of magnetic force abnormality generally shows the effect pursuant to the distribution of the sedimentary basins in the Tertiary period and the bedrocks in the Cretaceous period which are well developed in the bottom of the sea.

  • PDF

Evaluation of Correction Parameter for the Free-fall Grab Based Mn Nodule Abundance in the Southern Sector of the KODOS (KODOS 남쪽광구에서 자유낙하식 채취기로 채취된 망간단괴 부존률 평가를 위한 보정상수 검증)

  • Lee, Hyun-Bok;Ko, Young-Tak;Kim, Jong-Uk;Chi, Sang-Bum;Kim, Won-Nyon
    • Economic and Environmental Geology
    • /
    • v.44 no.6
    • /
    • pp.475-483
    • /
    • 2011
  • Quantitative estimate of manganese nodules based on the operation of a free fall grab (FFG) needs to be corrected because of its less retrieval ability. Previously, the correction parameter of the nodule abundance collected by FFG was calculated based on the image analysis of the photos of bottom sediment in the northern sector of the nodule exploration area of Korea in the NE equatorial Pacific. However, nodules in the southern sector are commonly covered by sediment, which may prevent the use of the correction parameter estimated by photographic techniques. In this study, we attempted dual nodule sampling at the same location by different equipments (i.e. box corer (BC) and FFG) to examine the previous correction parameter of nodule abundance for FFG operation. During the exploration cruises in 2007 to 2009, Mn-nodules were collected from 40 stations both by BC and FFG in the southern sector. The correlation analysis between BC and FFG operations revealed that the BC collected nodules 1.43 times larger than FFG. Our result suggests that the correction parameter of 1.43 can be applied for collection of FFG data to estimate Mn-nodule distribution in the southern sector. The obtained parameter is similar to the previous parameter (1.42~1.45) calculated by the image analysis method, indicating an usefulness of new correction parameter suggested by this study.