• Title/Summary/Keyword: scroll compressor

Search Result 149, Processing Time 0.027 seconds

Dynamic Behavior Analysis of Scroll Compressor (스크롤 압축기의 동적 거동 해석)

  • Chun, Seung-woo;Park, Sung-jun
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.2
    • /
    • pp.49-54
    • /
    • 2012
  • These conventional reciprocating compressor(reciprocating type compressor) or household refrigerators and car air conditioning rotary compressor, rotary compressor, has been used by a reciprocating piston torque variability and the deepening of the vibration problem, the suction valve and discharge valvein this study, as a result of the losses in the current use of the scroll compressor, scroll compressor with the features of low noise, high efficiency, small size, light weight, has increased. fixed Scroll(fixed scroll) scroll compressor with orbiting scroll (rotating scroll) vibration experiments were performed in order to identify the vibration characteristics of the structure of the Analysis was performed using the commercial finite element program(ANSYS) for the sake of comparison, the experimental results using a finite element model of research about the natural vibration characteristics due to a material change.

  • PDF

A Study on the Applicability of a Scroll Type Compressor to Small Capacity Refrigerators (소형 냉장고에 대한 스크롤 압축기 적용성에 관한 연구)

  • Kim, You-Chan;Kim, Woo-Young;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.2
    • /
    • pp.164-173
    • /
    • 2012
  • To study the applicability of a scroll type compressor to small capacity refrigerators, a R600a scroll compressor with algebraic scroll wrap has been designed. Its size and performance have been compared to a reciprocating type of the same displacement volume. By employing scroll wrap based on algebraic curve, high compression ratio can be accomplished without increasing the wrap angle much so that compact scroll may be obtained. Compared to a reciprocating one, the designed scroll compressor has diameter and height reduced by about 50% and 80%, respectively. By numerical simulation, it has been estimated that the scroll compressor provides 38.6% more cooling capacity than reciprocating type with 8.9% more power consumption, resulting in 27.3% increase in COP for ASHRAE low back pressure condition. With increasing the operating pressure ratio from 9.5 to 15.3, the overall compressor efficiency of the scroll compressor decreases from 72.6% to 65.2%, while that of the reciprocating compressor increases from 55.7% to 59.8%.

Numerical Study on the Dynamic Behaviour of a Crank Shaft Used in Scroll Compressor (스크롤 압축기의 크랭크축의 동적거동에 관한 수치적 연구)

  • 김태종;안영재;한동철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1940-1950
    • /
    • 1993
  • The theoretical investigation is done on the dynamic behavior of a crank shaft used in a scroll compressor. The compression performance of a scroll compressor is directly influenced by the sealing characteristics between fixed and orbiting scrolls, which is related with the dynamic behavior of a scroll compressor. Analyzing the constrained power transmitting system is came to be of importance, accordingly. The equations of motion and interacting forces of a scroll compressor are derived and solved numerically in this paper. The locus of the crank shaft is also obtained by employing the reaction force caused by the oil film of journal bearing. The results show that the crank shaft of a scroll compressor has considerably stable rotating locus.

Simulation on Performance Characteristics of a Tip-Seal Type Scroll Compressor (팁실형 스크롤 압축기의 성능 특성에 관한 해석적 연구)

  • Youn, Young;Kim, Yong-Chan;Min, Man-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1306-1318
    • /
    • 2001
  • This paper presents leakage and performance characteristics of a tip-seal type scroll compressor, The performance of a scroll compressor is strongly dependent on the leak age across the compression pockets. However, literature for leakage characteristics of the tip seal type scroll compressor is very limited due to complex sealing mechanism. In the present study, a simulation study was executed to investigate the tip-seal type scroll compressor by considering leakages passing through flank and tip clearance. As a result, the leakage phenomena of the tip seal type scroll compressor as a function of discharge pressure, tip clearance, dimension of the tip seal were analyzed. Effects of leakage on the performance of the compressor were also clarified.

  • PDF

A Study on Leakage Characteristics of a Scroll Compressor with alternative Refrigerants of R22 (R22 대체냉매를 적용한 스크롤 압축기의 누설 특성에 관한 연구)

  • Youn, Young;Kim, Yong-Chan;Min, Man-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.377-387
    • /
    • 2001
  • This paper presents leakage characteristics of a scroll compressor applying alternative refrigerants of R22 such as R407c and R410a under actual operating conditions. Because leakage in a scroll compressor produce significant losses and degradation of performance, those should be clarified to design a high efficient scroll compressor with alternative refrigerants of R22. However, flank and tip leakage characteristics of a scroll compressor with alternative refrigerants are very limited in open literature. In the present study, both experimentation and modeling of the leakages in the scroll compressor were performed. As a result, it was observed that the leakages of the scroll compressor with R407c increased by 15%, and that with R410a increased by 76% as compared to the compressor applying R22 under standard load conditions due to a higher upstream pressure and a higher pressure difference between pockets.

  • PDF

Analyses of Thrust Bearing in a Scroll Compressor Considering Oldham Ring (올댐링을 고려한 스크롤 압축기 스러스트 베어링의 해석)

  • Park, Sang-Shin;Lee, Seung-Ryoul
    • Tribology and Lubricants
    • /
    • v.23 no.3
    • /
    • pp.109-116
    • /
    • 2007
  • A scroll compressor is on the increase in the use for the cooling and ambition machinery because of the advantages about high efficiency, low vibration and low noise. The design of thrust bearing for scroll compressor has depended on the experience. The lubrication considering the squeeze flow was applied for high side shell and low side shell of scroll thrust bearing. This work was based on governing fluid lubrication equation at the general coordinate. It shows the behavior for an orbiting scroll with direct numerical analysis using FDM. This study obtained the theoretical design value by finding load capacity and tilting angle of an orbiting scroll for thrust bearing in a scroll compressor. Especially this work performed the analysis about the design parameter. The program was written using Visual C++ to enhance user to change the design parameter easily. In particular the result value and the pressure profile were displayed as windows in every step for user to understand without difficulty.

Conceptual design of scroll expander-compressor for Stirling engine (스크롤 방식 스털링 엔진용 스크롤 압축기-팽창기 개념 설계)

  • Kim, Woo-Young;Kim, Hyun-Jin;Kim, Young-Min;Lee, Sang-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.397-403
    • /
    • 2007
  • In this paper, conceptual design of scroll expander-compressor for Stirling engine utilizing solar energy as heat source has been carried out. Orbiting scroll member was designed to have a double-sided structure to reduce the overall scroll size and to cancel out the axial forces on the orbiting scroll base plate. Diameter of designed scroll base plate was about 251 mm for the expander, and it was about 218 mm for the compressor. With operating condition such as temperature range of $400^{\circ}C/20^{\circ}C$, pressure range of 6 MPa/2 MPa, and shaft speed of 2700 rpm, the shaft output of the designed scroll expander was calculated to be 49.8 kW, while input power for the scroll compressor was 38.6 kW, yielding 11.2 kW for the output power of the Stirling engine. Overall efficiencies of the scroll expander and compressor were 93.73% and 92.87%, respectively.

  • PDF

Coupled Thermal-Stress Analysis of Scrolls in Automotive Scroll Compressor (전동식 Scroll Compressor의 Scroll 열변형 해석)

  • Lee, Hyoung-wook;Kim, Jeongbae;Lee, Geun-An;Lee, Jong Sup;Lee, Young-Seon
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.1
    • /
    • pp.38-42
    • /
    • 2012
  • A scroll compressor used in the air conditioning in automobile consists of the fixed scroll and the orbiting scroll. Temperature gradient in the scroll compressor during the operation induces the thermal expansion of two scrolls. Therefore, the gap between scrolls in the initial stage is regarded as an important variable in structural design of the scroll compressor. The coupled thermal-stress analysis was carried out for the scrolls of a scroll compressor. The temperatures of major points of two scrolls in the steady states were referred by the literature of C. Lin. The sequentially coupled thermal-stress analysis is utilized to the heat transfer analysis and the thermal expansion analysis. In the thermal expansion analysis, the contact analysis was considered between the fixed and the orbiting scrolls in order to obtain the penetration distance and the contact pressure between two scrolls. The range of deformation was from 44 to $76{\mu}m$ according to the height of the scroll. The maximum penetration distance of $60{\mu}m$ occurred at the top surface of the fixed scroll in the center of the scroll parts.

  • PDF

Determination of an Optimum Orbiting Radius for an Oil-Less Scroll Air Compressor

  • Kim, Hyun-Jin;Lee, Yong-Ho;Kwon, Tae-Hun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.4
    • /
    • pp.124-129
    • /
    • 2008
  • Design practice has been made on an oil-less scroll air compressor as an air supply device for a 2 kW fuel cell system where air pressure of 2 bar and flow rate of 120 liter/min are required. Basic structure of the scroll compressor includes double-sided scroll wrap for the orbiting scroll driven by two crankshafts connected to each other by a timing belt. These features can eliminate thrust surface which otherwise would produce frictional heat and jeopardize reliable operation of the orbiting scroll and the scroll element's deformation as well. This study focuses on optimum scroll wrap design; orbiting radius has been chosen as an independent design parameter. As the orbiting radius changes, scroll sizes such as scroll base plate and discharge port diameters change accordingly. Gas compression-related losses and mechanical loss also change with the orbiting radius. With a scroll base plate diameter of 120mm at most and discharge port of at least 10mm, the orbiting radius should be within the range of 2.5-4.0mm. With this range of the orbiting radius, it was estimated by performance analysis that the compressor efficiency reached to a maximum of ${\eta}_c$=96% at the orbiting radius of $r_s$=3.5mm for the scroll wrap height-to-thickness ratio of h/t=5.

Performance analysis of co-orbiting scroll compressor (동시 선회 스크롤 압축기의 성능해석)

  • 김현진;김명균;서원열
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.716-724
    • /
    • 1999
  • In co-orbiting scroll compressor, the two scroll members are to orbit with independent radii, producing a relative orbit motion between them. One scroll member is driven by the crank mechanism while the motion of the other member is determined by geometrical constraints and reacting forces. This paper presents an analytical study on the performance of a co-orbiting scroll compressor. The following results have been obtained: Radial contact force between the scroll wraps is virtually free from the centrifugal force of the orbiting scroll member. The frictional losses are somewhat increased due to the complicated drive mechanism, yielding to a little lower EER compared to conventional radially compliant scroll compressors .

  • PDF