• Title/Summary/Keyword: scroll

Search Result 378, Processing Time 0.033 seconds

Cephalic lateral crural advancement flap

  • Bulut, Fuat
    • Archives of Plastic Surgery
    • /
    • v.48 no.2
    • /
    • pp.158-164
    • /
    • 2021
  • Background In lower lateral cartilage (LLC) surgery, cephalic trimming poses risks for the collapse of the internal and external nasal valves, pinched nose, and drooping deformity. The cephalic lateral crural advancement (CLCA) technique presented herein was aimed at using a flap to increase nasal tip rotation and support the lateral crus, in addition to the internal and external nasal valves, by avoiding grafts without performing excision. Methods This study included 32 patients (18 female and 14 male) and the follow-up period for patients having undergone primer open rhinoplasty was 12 months. The LLC was elevated from the vestibular skin using the CLCA flap. A cephalic incision was performed without cephalic trimming. Two independent flaps were formed while preserving the scroll ligament complex. The CLCA flap was advanced onto the lower lateral crus while leaving the scroll area intact. The obtained data were analyzed retrospectively. Results The mean age of the patients was 31.6 years (range, 20-51 years). The Rhinoplasty Outcome Examination scores after 12 months varied from 90 to100 points, and 93% of patients reported perfect satisfaction. At a 1-year follow-up, the patients' nasal patency (visual analogue scale) rose from 4.56±1.53 (out of 10) to 9.0±0.65 (P<0.001). Conclusions The CLCA flap led to better nasal tip definition by protecting the scroll area, increasing tip rotation, and supporting the internal and external nasal valves without cephalic excision.

A Scientific Analysis of Pigments for A Scroll Painting in Daeungjeon Hall of Bulguk Temple (불국사 대웅전 석가모니후불탱화 안료의 과학적 분석)

  • Kim, So Jin;Han, Min Su;Lee, Han Hyoung
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.3
    • /
    • pp.212-223
    • /
    • 2012
  • Pigments used paintings, ornaments, weapons and various objects have been recognised as important elements to ascertain the history, manufacturing technique and cultural migration. Since the understanding of composition of pigments by analysis began in 1963, its technique and methodology has much advanced in recent years; recent study used the portable X-ray Fluorescence as non-destructive analysis has been practiced in particular. However the study on pigments necessitates overall and systematic research because it is difficult to understand periodical and regional use of pigments. by fractional studies. Therefore this research investigates the coloring materials and painting techniques of the scroll painting depicting preaching scene of Sakyamuni Buddha in Daeungjeon Hall, a main hall of Bulguk temple, through scientific analysis and comparison of various pigments which had been applied to the buddhist paintings of Joseon Dynasty. Consequently, it is confirmed that the scroll painting used pigments of white lead[$2PbCO_3{\cdot}Pb(OH)_2$] for ground layer and used mixture of different pigments such as cinnabar (HgS) minium($Pb_3O_4$) malachite($2CuO{\cdot}CO_2{\cdot}H_2O$) hematite($Fe_2O_3$) gold(Ag) for presenting various colors on the painting layer. It has been also believed that mineral pigments were applied to the scroll painting, yet it is difficult to confirm whether it is natural or synthetic pigments because the crystal structures of pigments were not analyzed. The results of this study, however, provide useful reference data for the understanding of the components of pigments and manufacturing techniques of buddhist scroll paintings, in particular, of Joseon Dynasty.

Flows around crossflow fan (Crossflow Fan 주변의 유동)

  • Kim, Jae-Won;Jung, Yeun-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.678-683
    • /
    • 2001
  • The present work has carried out experimental study on a cross-flow fan system with a simplified vortex wall scroll casing. A cross-flow fan test rig was constructed to obtain pressure rise and volume flow rate for various fan operating conditions. The performance estimation is using a wind tunnel with a motor driven damper for flow rate control and flows are quantitatively visualized by light scattering system with a pulsed laser. Min focus on the visualization is finding a eccentric vortex inside a fan which is a major factor reducing fan efficiency. Comprehensive engineering data are prepared for industrial applications and show a good agreement with a prior work by experimental measurements.

  • PDF

The Synchronization in Hyper-Chaos

  • Youngchul Bae;Kim, Juwan;Kim, Yigon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.504-507
    • /
    • 2003
  • In this paper, we introduce a new hyper-chaos synchronization method called embedding synchronization using hyper-chaos consist of State-Controlled Cellular Neural Network (SC-CNN). We make a hyper-chaos circuit using SC-CNN with the n-double scroll. A hyper-chaos circuit is created by applying identical n-double scroll with weak coupled method to each cell. Hyper-chaos synchronization was achieved using embedding synchronization between the transmitter and receiver about each state variable in the SC-CNN.

  • PDF

Experimental Study on the Design Parameter Effects on the Flow-rate and the Noise level in a Cross-flow Fan (실험에 의한 직교류홴의 유량 및 소음 분석)

  • Ahn, Cheol-O;Rew, Ho-Seon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.1 no.1 s.1
    • /
    • pp.41-48
    • /
    • 1998
  • This study was carried out to investigate the effect of design parameters on the volume flow-rate and the noise level and to finally find the optimal design variables. Eighteen cross-flow fans were designed by the method of orthogonal array, and the flow-rate and the noise level were measured. These data were analyzed by the neural network system. The effects of eight design variables(scroll exit angle, scroll arc length et al.) on the fan performance and the noise level were valuated and discussed. This experiment shows that the design solutions suggested by neural network system may increase its volume flow-rate and reduce noise simultaneously.

  • PDF

An Experimental Study of the Influences of Basic Design Parameters on the Performance and the Noise Characteristics of Cross-flow Fans (직교류 홴의 설계인자가 성능 및 소음 특성에 미치는 영향에 대한 실험적 연구)

  • 구형모
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.430-436
    • /
    • 2000
  • The cross-flow fans have been widely used to constitute the air moving systems in many air-ventilating and air-conditioning units. The cross-flow fan system has many design parameters which have crucial influence on the performance and the noise characteristics of the units. As a result there are many difficulties in the design stage of the system and the general design guide has not been sufficiently established yet. This study presents the experimental results of the parametric investigation of some chosen design parameters which are directly related to the shape of the stabilizer the profile of the scroll casing and the diffusion angle of the flow exit. The results are expressed in terms of the fan performance and the specific sound pressure level characteristics. Some parameters have been found to have crucial effects on the system performance/noise characteristics and should be considered with care in the design stage.

  • PDF

Shape Optimization of Cut-Off in Multiblade Fan/Scroll System Using CFD and Neural Network (신경망 기법을 이용한 다익 홴/스크롤 시스템의 컷오프 최적화)

  • Han, S.Y.;Maeng, J.S.;Yoo, D.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.365-370
    • /
    • 2001
  • In order to minimize unstable flow occurred at a multiblade fan/scroll system, optimal angle and shape of cut-off was determined by using two-dimensional turbulent fluid field analyses and neural network. The results of CFD analyses were used for learning as data of input and output of neural network. After learning neural network optimization process was accomplished for design variables, the angle and the shape of cut-off, in the design domain. As a result of optimization, the optimal angle and shape were obtained as 71 and 0.092 times the outer diameter of impeller, respectively, which are very similar values to previous studies. Finally, it was verified that the fluid field is very stable for optimal angle and shape of cut-off by two-dimensional CFD analysis.

  • PDF