• Title/Summary/Keyword: screw holding strength

Search Result 20, Processing Time 0.028 seconds

Effects of mushroom composition on the quality characteristics of extruded meat analog (버섯 첨가가 압출성형 대체육의 품질 특성에 미치는 영향)

  • Cho, Sun Young;Ryu, Gi-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.4
    • /
    • pp.357-362
    • /
    • 2020
  • This study was conducted to investigate the effects of mushroom composition (0, 4, 8, and 12%) on the quality characteristics of an extruded meat analog. The meat analog blend was isolated soy protein, wheat gluten, and corn starch (50:40:10). The extrusion condition was set to 55% feed moisture, 170℃ barrel temperature, and 150 screw speed by high moisture extrusion using a twin-screw extruder equipped with a cooling die. The integrity index, hardness, cohesiveness, springiness, chewiness, and cutting strength of the meat analog increased with the increasing mushroom content, while its water holding capacity and nitrogen solubility index (NSI) decreased. The protein digestibility decreased with the increasing mushroom content, while the DPPH radical scavenging activity significantly increased. In conclusion, the incorporation of mushrooms into the investigated meat analog enhanced its texture and antioxidant level.

Physical and Mechanical Properties of Panels Fabricated with Particle and Fiber by Composition Types (구성형태(構成形態)에 따른 파티클과 파이버로 제조(製造)한 패널의 물리적 및 기계적 성질)

  • Yoon, Hyoung-Un;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.9-22
    • /
    • 1992
  • The aim of this research was to investigate physical and mechanical properties of various composition panels, each fabricated with a ratio of fiber to particle of 2 to 10. Type A consisted of fiber-faces and particle-core in layered-mat system. Type B consisted of fiberboard-faces on particleboard-core. Type C consisted of fibers and particles in mixed-mat system. The results obtained from tests of bending strength, internal bond, screw holding strength and stability were as follows: 1. The bending strength and internal bonding of both the Type A panel and the Type B panel were higher than those of the Type C panel and three-layered particle board. 2. The mechanical properties of the Type C panel showed the lowest values of all composition methods. It seems that the different compression ratios of the particle and fiber interrupted the densification of the fibers when hot pressed. 3. The dimensional stability of layered-mat system panels consising of fiber-faces and particle-core was better the than control particleboard. 4. In composition methods of particle and fiber, layered-composition method was more resonable than mixed-composition. The Type B panel had the highest mechanical properties of all the composition types. 5. The Type A panel was considered the ideal composition method because of its resistance to delamination between the particle-layer and the fiber-layer and because of its lower adhesive content and more effective manufa cturing process.

  • PDF

Studies on Properties of Com-Ply Board and Oriented Strand Board (Com-Ply Board와 Oriented Strand Board(OSB)의 재질 비교에 관한 연구)

  • Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.17-25
    • /
    • 1994
  • This study was carried out to compare the properties of Com-Ply Boards with those of OSBs. These two kinds of boards were made of same flakes. Com-Ply Boards were covered with three different thickness veneers, such as 4mm, 3mm, and 2.5mm. All manufactured Com-Ply Boards and OSBs were 12mm thick. In MOR, all Com-Ply Boards were higher than OSB, and especially 3mm-veneer and 2.5mm-veneer Com-Ply Board were highest. But OSB showed 420kg/$cm^2$. 3mm-veneer Com-Ply Board showed the highest internal bonding 7.0kg/$cm^2$ and then 2.5mm-veneer showed 6.8kg/$cm^2$, and OSB showed 6.6kg/$cm^2$. Screw holding strength showed the high value 23.9kg/$cm^2$, 25.5kg/$cm^2$, and 29.3kg/$cm^2$ respectively at 3mm-veneer, 2.5mm-veneer Com-Ply Board and OSB. Thickness swelling of Com-Ply Boards was lower than that of OSB, but Water absorption of OSB was lower. Finally it was very encouraging that all properties of OSB without veneer, whose cost is higher than flake and whose properties is better, were not worse than those of Com-Ply Board with veneer. It seems That more researches on OSB will be required.

  • PDF

Fundamental Study of Manufacture Possibility and Composition Ratio of Sludge-Particle Board (슬러지-파티클 보드의 제조(製造) 가능성(可能性) 및 구성비율(構成比率)에 관한 기초연구(基礎硏究))

  • Lee, Phil-Woo;Yoon, Hyoung-Un;Kim, Dae-Jun;Son, Jung-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.57-65
    • /
    • 1993
  • The aim of this research was to manufacture sludge-particle board using paper sludge with wood particle and to investigate physical and mechanical properties of various sludge-particle boards, fabricated with ratios of sludge to particle of 10 to 90, 20 to 80, 30 to 70, 40 to 60 and 50 to 50(oven dry weight based). Sludge-particle boards were manufactured by urea-formaldehyde resin, 0.8 target specific gravity, and 10mm thickness. It was possible to manufacture sludge-particle board as the same processing in the present particleboard manufacturing system. This sludge-particle board have different properties as composition ratios of sludge and particle. And sludge-particle board made from 10 percent to 20 percent of sludge mixing ratio have similar mechanical properties compared with control particleboard. Especially, the sludge-particle board made from 10 percent to 40 percent mixing ratios of sludge have superior to control particleboard in internal bond, screw withdrawal holding strength and modulus of elasticity. In the case of dimensional stability, water absorption was increased and thickness swelling was decreased as increased with sludge mixing proportion. The sludge-particle board made of different mixing ratios of our laboratory design was able to concluded that there is possibility of partial substitution of wood particle materials.

  • PDF

Effects of Wood Particles and Steel Wire Compositions on Physical and Mechanical Properties of the Boards (목재(木材)파아티클과 철선(鐵線) 복합체(複合體)가 보오드의 물리적(物理的) 및 기계적(機械的) 성질(性質)에 미치는 영향(影響))

  • Park, Heon;Lee, Pill-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.3-44
    • /
    • 1986
  • In order to obtain the basic physical and mechanical properties of steel wire reinforced particleboard, particleboards were formed with large particles through 2.11 mm (12 meshes) and retained on 1.27mm (20 meshes) sieves and small particles through 1.27mm (20 meshes) and retained on 0.42mm (60 meshes) sieves from the plywood mill wastes of meranti (Shorea spp.) in the form of pallmanchips, applying urea-formaldehyde resin as an adhesive on the particle surface in 10 percent on the oven dried weight of particles, and arranging steel wires of 1mm in diameter 5,10,15,20, and 25mm in longitudinal and transverse direction with crossing in the mid of the board depth in single layer boards, 10mm in longitudinal or transverse direction without crossing in two layers and 10mm in longitudinal and transverse directions with and without crossing in three steel wire layers boards. The stepwise 9-minutes-multi-pressing schedule in 5 minutes at 35 kgf/$cm^2$, 2.5 minutes at 25 kgf/$cm^2$. and 1.5 minutes at 15 kgf/$cm^2$ was applied for $300{\times}200{\times}13$mm board at the temperature of 160$^{\circ}C$ in a hot press. Specific gravity, thickness swelling, bending properties of modulus of rupture (MOR), modulus of elasticity(MOE), work to proportional limit, and work to ultimate load, internal bond (IB), and screw holding power(SHP) of the reinforced boards were analyzed on the wire openings and wire layers. The results obtained are summarized as follows; 1) In specific gravity, particleboards with large particles and small particles had higher value with more steel wire placements and more steel layers composition, 2) Particleboards with large particles in accordance with more steel wire liners composition gave very poor thickness swelling. 3) The mechanical properties of particleboards formed with large or small particles were reinforced with more steel wire layers. Therefore, bending strength was improved in modulus of rupture, modulus of elasticity, and work to ultimate load. Especiallv, particleboards with two or three steel wire layers showed the tension lamination effect when the steels in lower steel wire layer were oriented parallel to the board length. 4) The modulus of rupture, modulus of elasticity, and work to ultimate load in bending varied with opening area, distance of lengthwise wires multipled by distance of transverse wires. Particleboards formed with large particles resulted in higher value in modulus of rupture with 1.5-3 $cm^2$ opening area, 1-2cm distance between transverse wires, and 1.5-2.5cm distance between lengthwise wires. Particle boards formed with small particles showed higher value with 0.5-1.5$cm^2$ or 3.75-6.25 $cm^2$ opening area, 0.5 or 2.5cm distance between transverse wires. 5) In modulus of elasticity, particleboards formed with large particles with one steel wire layer suggested higher value with 5-3$cm^2$ opening area, 1-2.5cm distance between transverse wires and also 1-2.5 cm distance between lengthwise wires. Particleboards formed with small particles showed higher value with 0.75-1.25$cm^2$ or 3-6.25$cm^2$ opening area and 0.5 or 2.5cm distance between transverse wires. 6) Particleboards formed with large particles gaved higher value in work to ultimate load with 1-3$cm^2$ opening area. Particleboards formed with small particles showed increasing tendancy with decreasing opening area. 7) In internal bond and screw holding power, particleboards formed with large particles had increasing value in two and three steel wire layers compositions, but particleboards formed with small particles showed no difference. Particleboards formed with large particles containing one steel wire layer showed no difference in internal bond and screw holding power, and particleboards formed with small panicles containing one steel wire layer resulted in increasing value in internal bond and decreasing value in screw holding power in accordance with increase in opening area.

  • PDF

A Study on the Mechanical and Physical Properties of Sawdustboard combined with Plastic Chip (플라스틱칩 결체(結締) 톱밥보드의 기계적(機械的) 및 물리적(物理的) 성질(性質)에 관(關)한 연구(硏究))

  • Lee, Phil-Woo;Suh, Jin-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.44-55
    • /
    • 1987
  • In order to study the effect of sawdustboard combined with plastic chips, 0.5mm($T_1$), 1mm($T_2$), 1.4mm($T_3$) thick nylon fiber. polypropylene rope fiber(RP), and 0.23mm thick moth-proof polypropylene net fiber(NP) were cut into 0.5, 1, 2cm long plastic chips. Thereafter, sawdustboard combined with plastic chips prepared as the above and plastic non-combined sawdustboard(control) were manufactured into 3 types of one-, two-, and three layer with 5 or 10% combination level. By the discussions and results at this study, the significant conclusions of mechanical and physical properties were summarized as follows: 1. The MORs were shown in the order of 3 layer> 2 layer> 1 layer among plastic non-combined boards, and $T_3$ < $T_2$ < $T_1$ < RP (NP(5%) < NP(l0%) among plastic combined boards. In 2cm long plastic chip in 1 layer board, the highest strength through all the composition was recognized. 1 layer board showing the lower strength with 0.5cm plastic chip rendered to the bending strength improvement by 2 or 3 layer board composition. On the other hand, 2 or 3 layer combined with 1, 2cm long polypropylene net fiber chips incurred MOR's conspicuous decrease requiring optimum plastic chip combined level and consideration to combined type. 2. MOE in plastic non-combined 3 layer board exhibited sandwich construction effect by higher resin content application to surface layer in the order of 3layer>1layer>2layer with the highest stiffness of the board combined with polypropylene chip, while nylon chip-combined board had little difference from plastic non-combined board. In relevant to length and layer effect, 3 layer board combined with the 0.5cm long polypropylene net fiber chip in 5% and 10% combined level presented 34-43% and 44-76% stiffness increase against plastic non-combined board(control), respectively. Moreover, in 1 layer board, 30% stiffness increase with 10% against 5% combined level in the 1 and 2cm long polypropylene net fiber chip was obtained. 3. Stress at proportional limit(Spl) showing the fiber relationship (r: 0.81-0.97) between MOR presented in the order of 1 layer<2 layer<3 layer in plastic non-combined board. Correspondingly, combined effect by layer and plastic chip length was similar to MOR's. 4. Differently from previous properties(MOR, MOE, Spl). work to maximum load(Wml) of 2 layer board approached to that of 3 layer board. Conforming the above phenomenon. 2 layer combined with 0.5cm long polypropylene net fiber chip kept the greater work than 1 layer. The polypropylene combined board superior to nylon -and plastic non - combined board seemed to have greater anti - failing capacity. 5. Internal bond strength(IB), in contrast to MOR's tendency. showed in the order of T1

  • PDF

Effect of Press Temperature and Time on Physical Properties of Larch Particleboard (압체온도(壓締温度)와 시간(時間)이 낙엽송(落葉松) 파티클 보오드의 물리적(物理的) 특성(特性)에 미치는 영향(影響))

  • Lee, Phil Woo;Chung, Gyun
    • Journal of Korean Society of Forest Science
    • /
    • v.63 no.1
    • /
    • pp.12-20
    • /
    • 1984
  • This research was performed to estimate the properties of particleboard based on the press time and temperature which was made of chip of larch that grows in Korea. The results in this study were as follows: 1) Even though the chips, 1:1-35 ratio between length and thickness, are relatively bad condition, the surface smoothness that can easily spread the adhesive evenly and thoroughly and bonding ability of chips can give proper physical properties. 2) It shows more mechanical properties at the press time of 10 min. in MOR (Modulus of Rupture), MOE (Modulus of Elasticity) and SHA (Screw Holding Ability). 3) It is not significant according to the press time 20 min. in MOR, IBS (Internal Bonding Strength) and SHA, for the reciprocal actions between the accelerating aging effect of chip and the softening effect of adhesion are occured. 4) IBS is rising according to the increasing temp at the press time of 10 min. Because it needs to transfer the plate heat to make the proper hardening temp. In the layer. 5) The heat treatment effects have greatly influenced the stahility of dimension by falling the absorption, anisotropy and inhomegenity. As a result of these the values of thickness and linear expansion ratio were respectively dropped by the increase of press temp and the time and so did absorption.

  • PDF

Effects on Quality Characteristics of Extruded Meat Analog by Addition of Tuna Sawdust (참치 톱밥의 첨가가 압출성형 인조육의 품질 특성에 미치는 영향)

  • Cho, Sung Young;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.4
    • /
    • pp.465-472
    • /
    • 2017
  • In this study, tuna sawdust was added to extruded meat analog in order to develop a meat analog with high quality. Addition of tuna sawdust has merit for utilizing a byproduct from poultry processing. Physicochemical characteristics were examined through the extrusion cooking process. The basic mixture of sample mixed with 65% deffated soy flour 25% isolated soy protein, and 10% corn starch was setup as the raw material. Three kinds of samples were made in total by addition of 15% and 30% tuna sawdust to this mixture. The extrusion process had a screw speed of 250 rpm, die temperature of $140^{\circ}C$, and moisture content of 50%. As addition of tuna sawdust increased, breaking strength and density decreased, specific length increased, and integrity and water holding capacity decreased. Likewise, nitrogen solubility index and protein digestibility decreased as addition of tuna sawdust increased. DPPH radical scavenging activity increased as addition of tuna sawdust addition, whereas it decreased as storage period increased to 30 or 60 days. The value of rancidity decreased as addition of tuna sawdust increased. However, 60 days later, radical scavenging activity increased more or less, and a significant difference was detected 150 days later. In conclusion, addition of tuna sawdust increased soft texture, and nutrition of the basic mixture sample. The process promoting functionality such as improvement of antioxidant function was confirmed through this study.

A Study on Physical and Mechanical Properties of Sawdustboards combined with Polypropylene Chip and Oriented Thread (폴리프로필렌사(絲)칩과 배향사(配向絲)를 결체(結締)한 톱밥보드의 물리적(物理的) 및 기계적(機械的) 성질(性質)에 관(關)한 연구(硏究))

  • Suh, Jin-Suk;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.1-41
    • /
    • 1988
  • For the purpose of utilizing the sawdust having poor combining properties as board raw material and resulting in dimensional instability of board, polypropylene chip (abbreviated below as PP chip) or oriented PP thread was combined with sawdust particle from white meranti(Shorea sp.). The PP chip was prepared from PP thread in length of 0.25, 0.5, 1.0 and 1.5 cm for conventional blending application. Thereafter, the PP chip cut as above was combined with the sawdust particle by 3, 6, 9, 12 and 15% on the weight basis of board. Oriented PP threads were aligned with spacing of 0.5, 1.0 and 1.5cm along transverse direction of board. The physical and mechanical properties on one, two and three layer boards manufactured with the above combining conditions were investigated. The conclusions obtained at this study were summarized as follows: 1. In thickness swelling, all one layer boards combined with PP chips showed lower values than control sawdustboard, and gradually clear decreasing tendendy with the increase of PP chip composition. Two layer board showed higher swelling value than one layer board, but the majority of boards lower values than control sawdustboard. All three layer boards showed lower swelling values than control sawdustboard. 2. In the PP chip and oriented thread combining board, the swelling values of boards combining 0.5cm spacing oriented thread with 1.0 or 1.5cm long PP chip in 12 and 15% by board weight were much lower than the lowest of one or three layer. 3. In specific gravity of 0.51, modulus of rupture of one layer board combined with 3% PP chip showed higher value than control sawdustboard. However, moduli of rupture of the boards with every PP chip composition did not exceed 80kgf/cm2, the low limit value of type 100 board, Korean Industrial Standard KS F 3104 Particleboards. Moduli of rupture of 6%, 1.5cm-long and 3% PP chip combined boards in specific gravity of 0.63 as well as PP chip combined board in specific gravity of 0.72 exceeded 80kgf/$cm^2$ on KS F 3104. Two layer boards combined with every PI' chip composition showed lower values than control sawdustboard and one layer board. Three layer boards combined with.1.5cm long PP chip in 3, 6 and 9% combination level showed higher values than control sawdustboard, and exceeded 80kgf/$cm^2$ on KS F 3104. 4. In modulus of rupture of PP thread oriented sawdustboard, 0.5cm spacing oriented board showed the highest value, and 1.0 and 1.5cm spacing oriented boards lower values than the 0.5cm. However, all PP thread oriented sawdustboards showed higher values than control saw-dustboard. 5. Moduli of rupture in the majority of PP chip and oriented thread combining boards were higher than 80kgf/$cm^2$ on KS F 3104. Moduli of rupture in the boards combining longer PP chip with narrower 0.5cm spacing oriented thread showed high values. In accordance with the spacing increase of oriented thread, moduli of rupture in the PP chip and oriented thread combining boards showed increasing tendency compared with oriented sawdustboard. 6. Moduli of elasticity in one, two and three layer boards were lower than those of control sawdustboard, however, moduli of elasticity of oriented sawdustboards with 0.5, 1.0 and 1.5cm spacing increased 20, 18 and 10% compared with control sawdustboard, respectively. 7. Moduli of elasticity in the majority of PP chip and oriented thread combining boards in 0.5, 1.0 and 1.5cm oriented spacing showed much higher values than control sawdustboard. On the whole, moduli of elasticity in the oriented boards combined with 9% or less combination level and 0.5cm or more length of PP chip showed higher values than oriented sawdustboard. The increasing effect on modulus of elasticity was shown by the PP chip composition in oriented board with narrow spacing. 8. Internal bond strengths of all one layer PP chip combined boards showed lower values than control sawdust board, however, the PP chip combined boards in specific gravity of 0.63 and 0.72 exceeded 1.5kgf/$cm^2$, the low limit value of type 100 board and 3kgf/$cm^2$, type 200 board on KS F 3104, respectively. And also most of all two, three layer-and oriented boards exceeded 3kgf/$cm^2$ on KS F. 9. In general, screw holding strength of one layer board combined with PP chip showed lower value than control sawdustboard, however, that of two or three layer board combined with PP chip did no decreased tendency, and even screw holding strength with the increase of PP chip composition. In the PP chip and oriented PP thread combining boards, most of the boards showed higher values than control sawdustboard in 9% or less PP chip composition.

  • PDF

Effects of Fire Retardant Treatment on Mechanical Properties and Fire Retardancy of Particleboard and Complyboard (내화처리(耐火處理)가 파아티클보오드와 콤플라이보오드의 기계적성질(機械的性質) 및 내화도(耐火度)에 미치는 영향(影響))

  • Kwon, Jin-Heon;Lee, Phll-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.3-57
    • /
    • 1985
  • This research was conducted to examine the feasibility of developing fire retardant particleboard and complyboard. Particleboard were manufactured using meranti particle(Shorea spp.)made with Pallmann chipper, and complyboard meranti particle and apitong veneer (Dipterocarpus spp.). Particles were passed through 4mm (6 mesh) and retained on 1mm (25 mesh). Urea formaldehyde resin was added 10 percent on ovendry weight of particle. Face veneer for complyboard was 0.9, 1.6 and 2.3mm in thickness and spread with 36 g/(30.48 cm)$^2$ glue on one side. Veneers were soaked with 10 percent solution of five fire retardant chemicals (diammonium phosphate, ammonium sulfate, monoammonium phosphate, Pyresote and Minalith), and particles with 5, 10, 15 and 20 percent solution of five chemicals. Particleboard and complyboard were evaluated on physical and mechanical properties, and fire retardancy. The results obtained were summarized as follows. 1. Among five fire retardant chemicals treated to particleboard and complyboard, the retention of ammonium sulfate in 5 percent solution showed the lowest as 1.39 kg/(30.48 cm)$^3$ exceeding the minimum retention of 1.125 kg/(30.48 cm)$^3$ recommended by Forest Products Laboratory and Koch. 2. Particleboard and complyboard treated with diammonium phosphate showed higher modulus of rupture (MOR), modulus of elasticity (MOE), internal bond strength and screw holding power than those with the other chemicals. 3. MOR and MOE of complyboard treated with fire retardant chemicals were greater than those of fire retardant particleboard. 4. Thickness swelling of fire retardant complyboard was lower than that of fire retardant particleboard. 5. The moisture content of the boards treated with Pyresote and Minalith increased and with monoammonium phosphate reduced. 6. Fire retardant particleboard showed no ignition, and fire retardant complyboard started ignition, but time required to ignite was prolonged comparing the controlboard. Complyboard with only shell veneer treated showed ignition and lingering flame, but lingering flame time was shorter than controlboard. Complyboard with treated both core and veneer showed ignition but not lingering flame. 7. Flame length, carbonized area and weight loss were smaller than controlboard but had no significant difference among chemicals treated. 8. Temperature of unexposed surface of fire retardant particleboard was lowered with the increasing concentration of five chemicals. 9. Temperature of unexposed surface of fire retardant particleboard was lowered with the highest in Pyresote and the lowest in Minalith. 10. Temperature of unexposed surface of fire retardant complyboard was lower than that of controlboard.

  • PDF