• Title/Summary/Keyword: scratch assay

Search Result 33, Processing Time 0.027 seconds

Sesamin induces A549 cell mitophagy and mitochondrial apoptosis via a reactive oxygen species-mediated reduction in mitochondrial membrane potential

  • Yang, Shasha;Li, Xiangdan;Dou, Haowen;Hu, Yulai;Che, Chengri;Xu, Dongyuan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.3
    • /
    • pp.223-232
    • /
    • 2020
  • Sesamin, a lipid-soluble lignin originally isolated from sesame seeds, which induces cancer cell apoptosis and autophagy. In the present study, has been reported that sesamin induces apoptosis via several pathways in human lung cancer cells. However, whether mitophagy is involved in sesamin induced lung cancer cell apotosis remains unclear. This study, the anticancer activity of sesamin in lung cancer was studied by reactive oxygen species (ROS) and mitophagy. A549 cells were treated with sesamin, and cell viability, migration ability, and cell cycle were assessed using the CCK8 assay, scratch-wound test, and flow cytometry, respectively. ROS levels, mitochondrial membrane potential, and apoptosis were examined by flow cytometric detection of DCFH-DA fluorescence and by using JC-1 and TUNEL assays. The results indicated that sesamin treatment inhibited the cell viability and migration ability of A549 cells and induced G0/G1 phase arrest. Furthermore, sesamin induced an increase in ROS levels, a reduction in mitochondrial membrane potential, and apoptosis accompanied by an increase in cleaved caspase-3 and cleaved caspase-9. Additionally, sesamin triggered mitophagy and increased the expression of PINK1 and translocation of Parkin from the cytoplasm to the mitochondria. However, the antioxidant N-acetyl-L-cysteine clearly reduced the oxidative stress and mitophagy induced by sesamin. Furthermore, we found that cyclosporine A (an inhibitor of mitophagy) decreased the inhibitory effect of sesamin on A549 cell viability. Collectively, our data indicate that sesamin exerts lethal effects on lung cancer cells through the induction of ROS-mediated mitophagy and mitochondrial apoptosis.

Pimecrolimus increases the melanogenesis and migration of melanocytes in vitro

  • Xu, Ping;Chen, Jie;Tan, Cheng;Lai, Ren-Sheng;Min, Zhong-Sheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.3
    • /
    • pp.287-292
    • /
    • 2017
  • Vitiligo is an intriguing depigmentary disorder and is notoriously difficult to be treated. The ultimate goal of vitiligo treatment is to replenish the lost melanocytes by immigration from hair follicle and to restore the normal function of melanogenesis by residual melanocytes. There are two types of topical calcineurin inhibitors called tacrolimus and pimecrolimus, and are recommended as the first-line treatments in vitiligo. Although pimecrolimus is efficacious for the repigmentation of vitiligo, its intrinsic mechanisms have never been investigated in vitro. This research aimed to study the ability of pimecrolimus on stimulating melanogenesis, melanocyte migration and MITF (microphthalmia associated transcription factor) protein expression. Results showed that pimecrolimus at the dosages of 1, 10, $10^2$nM were neither mitogenic nor cytotoxic to melanocytes. The addition of pimecrolimus at 10, $10^2$ and $10^3nM$ significantly increased intracellular tyrosinase activity, which was consistent with the elevated content of melanin content at the same concentrations. The peak effect was seen at 72 h in response to $10^2$nM pimecrolimus. Results of the wound scratch assay and Transwell assays indicate that pimecrolimus is effective in facilitating melanocyte migration on a collagen IV-coated surface. In addition, MITF protein yield reached the highest by pimecrolimus at $10^2nM$. In brief, pimecrolimus enhances melanin synthesis as well as promotes migration of melanocytes directly, possibly via their effects on MITF protein expression.

SDC4 Gene Silencing Favors Human Papillary Thyroid Carcinoma Cell Apoptosis and Inhibits Epithelial Mesenchymal Transition via Wnt/β-Catenin Pathway

  • Chen, Liang-Liang;Gao, Ge-Xin;Shen, Fei-Xia;Chen, Xiong;Gong, Xiao-Hua;Wu, Wen-Jun
    • Molecules and Cells
    • /
    • v.41 no.9
    • /
    • pp.853-867
    • /
    • 2018
  • As the most common type of endocrine malignancy, papillary thyroid cancer (PTC) accounts for 85-90% of all thyroid cancers. In this study, we presented the hypothesis that SDC4 gene silencing could effectively attenuate epithelial mesenchymal transition (EMT), and promote cell apoptosis via the $Wnt/{\beta}-catenin$ signaling pathway in human PTC cells. Bioinformatics methods were employed to screen the determined differential expression levels of SDC4 in PTC and adjacent normal samples. PTC tissues and adjacent normal tissues were prepared and their respective levels of SDC4 protein positive expression, in addition to the mRNA and protein levels of SDC4, $Wnt/{\beta}-catenin$ signaling pathway, EMT and apoptosis related genes were all detected accordingly. Flow cytometry was applied in order to detect cell cycle entry and apoptosis. Finally, analyses of PTC migration and invasion abilities were assessed by using a Transwell assay and scratch test. In PTC tissues, activated $Wnt/{\beta}-catenin$ signaling pathway, increased EMT and repressed cell apoptosis were determined. Moreover, the PTC K1 and TPC-1 cell lines exhibiting the highest SDC4 expression were selected for further experiments. In vitro experiments revealed that SDC4 gene silencing could suppress cell migration, invasion and EMT, while acting to promote the apoptosis of PTC cells by inhibiting the activation of the $Wnt/{\beta}-catenin$ signaling pathway. Besides, $si-{\beta}-catenin$ was observed to inhibit the promotion of PTC cell migration and invasion caused by SDC4 overexpression. Our study revealed that SDC4 gene silencing represses EMT, and enhances cell apoptosis by suppressing the activation of the $Wnt/{\beta}-catenin$ signaling pathway in human PTC.

Astaxanthin induces migration in human skin keratinocytes via Rac1 activation and RhoA inhibition

  • Ritto, Dakanda;Tanasawet, Supita;Singkhorn, Sawana;Klaypradit, Wanwimol;Hutamekalin, Pilaiwanwadee;Tipmanee, Varomyalin;Sukketsiri, Wanida
    • Nutrition Research and Practice
    • /
    • v.11 no.4
    • /
    • pp.275-280
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Re-epithelialization has an important role in skin wound healing. Astaxanthin (ASX), a carotenoid found in crustaceans including shrimp, crab, and salmon, has been widely used for skin protection. Therefore, we investigated the effects of ASX on proliferation and migration of human skin keratinocyte cells and explored the mechanism associated with that migration. MATERIAL/METHOD: HaCaT keratinocyte cells were exposed to $0.25-1{\mu}g/mL$ of ASX. Proliferation of keratinocytes was analyzed by using MTT assays and flow cytometry. Keratinocyte migration was determined by using a scratch wound-healing assay. A mechanism for regulation of migration was explored via immunocytochemistry and western blot analysis. RESULTS: Our results suggest that ASX produces no significant toxicity in human keratinocyte cells. Cell-cycle analysis on ASX-treated keratinocytes demonstrated a significant increase in keratinocyte cell proliferation at the S phase. In addition, ASX increased keratinocyte motility across the wound space in a time-dependent manner. The mechanism by which ASX increased keratinocyte migration was associated with induction of filopodia and formation of lamellipodia, as well as with increased Cdc42 and Rac1 activation and decreased RhoA activation. CONCLUSIONS: ASX stimulates the migration of keratinocytes through Cdc42, Rac1 activation and RhoA inhibition. ASX has a positive role in the re-epithelialization of wounds. Our results may encourage further in vivo and clinical study into the development of ASX as a potential agent for wound repair.

Inhibitory effect of ginsenglactone A from Panax ginseng on the tube formation of human umbilical vein endothelial cells and migration of human ovarian cancer cells

  • Dahae Lee;Ranhee Kim;So-Ri Son;Ji-Young Kim;Sungyoul Choi;Ki Sung Kang;Dae Sik Jang
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.246-254
    • /
    • 2023
  • Background: Here, we aimed to assess the inhibitory effect of a new compound from Panax ginseng on the migration of human ovarian cancer cells and tube formation of human umbilical vein endothelial cells (HUVECs). Methods: A new compound, ginsenglactone A (1), was isolated from ginseng roots, together with seven known compounds (2-8). Spectroscopic data were used to elucidate the chemical structure of 1. The tubular structure formation in HUVECs was assessed by Mayer's hematoxylin staining. The migration of A2780 cells was evaluated using the scratch wound healing assay. Results: HUVECs treated with 1 had the statistically significant decrease in tubular structure formation compared to the HUVECs treated with compounds 2-8. This effect was enhanced by co-treatment with inhibitors for phosphatidylinositol 3-kinase (PI3K) (LY294002) and extracellular signal-regulated kinase (ERK) (U0126). Treatment with 1 decreased the expression of phosphorylation of ERK, PI3K, vascular endothelial growth factor receptor2 (VEGFR2), Akt, and mammalian target of rapamycin (mTOR). In addition, the ability of A2780 cells to cover the scratched area were also decreased. This effect was enhanced by co-treatment with U0126. Lastly, treatment with 1 decreased the phosphorylation of ERK, matrix metalloproteinase-9 (MMP-9), and MMP-2. Conclusion: These results suggest that ginsenglactone A is a potential inhibitor of HUVEC tubular structure formation and A2780 cellular migration, which may be helpful for understanding its anticancer mechanism.

Photobiomodulation Mediated by Red and Infrared Light: A Study of Its Effectiveness on Corneal Epithelial Cells and Wound Healing (적색 및 적외선 빛을 이용한 Photobiomodulation: 각막상피세포에 대한 효과와 상처 치유에 관한 연구)

  • Sun Hee Ahn;Jae Sung Ahn;Byeongil Lee
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.2
    • /
    • pp.45-52
    • /
    • 2023
  • In this study, we have investigated the effect of photobiomodulation (PBM) on corneal wound healing, using a low-power light-emitting diode (LED) at different wavelengths. We found that LEDs with wavelengths ranging from 623 to 940 nm had no significant cytotoxic effects on corneal epithelial cells. The effect of PBM on promoting cell migration was analyzed by scratch assay, and it was found that PBM at 623 nm significantly increased cell migration and promoted wound healing. Furthermore, the expression of genes related to cell migration and wound healing was analyzed, and it was found that PBM at 623 nm upregulated the expression of the genes FGF-1 and MMP2, which are known to promote cell proliferation and extracellular matrix degradation. These findings suggest that PBM with low-powered light at specific wavelengths, particularly 623 nm, could be utilized to treat corneal injury.

UV-induced Photodamage - attenuating Properties of Water Extract from Lentinuls edodes (피부각질형성세포에서 표고버섯 물 추출물의 피부노화 억제 효과)

  • Lee, Jung Im;Oh, Jung Hwan;Park, So Young;Kim, Hye Ran;Jung, Kyung Im;Jeon, Byung-Jin;Kim, Dongmin;Kong, Chang-Suk
    • Journal of Life Science
    • /
    • v.30 no.10
    • /
    • pp.877-885
    • /
    • 2020
  • Lentinuls edodes has been used for traditional food and medicine around Asia, and a variety of biological effects have been reported. In this study, L. edodes water extract (LWE) was investigated for its anti-photodamage effect in HaCaT keratinocytes. To perform the necessary assays, L. edodes was extracted with distilled water for 8 hr at 40℃ in an extract tank. Anti-photodamage activity was assessed using a scratch wound healing assay, cell proliferation, and a reactive oxygen species (ROS) scavenging test and by measuring the mRNA and protein expression levels of matrix metalloproteinases (MMPs) and type I procollagen. MMPs and collagen expression are major markers of UV-induced photodamage in skin. Prior to photodamage analysis, the total polyphenol and β-glucan contents of the LWE were evaluated and found to be 4.64 mg GAE/g DW and 165.96 mg/g, respectively. Treatment with LWE induced cell migration and cell proliferation in UV-irradiated HaCaT cells, and LWE effectively scavenged the ROS induced by H2O2 and UVB irradiation in HaCaT cells. UVB irradiation induced ROS generation and led to increased production of MMP-1 and MMP-9 and to decreased collagen production in human keratinocytes. Treatment with LWE upregulated the expression levels of MMP-1, MMP-9, and type I procollagen in UVB-irradiated HaCaT cells. This study suggests that LWE could be used to develop cosmetic materials with anti-photodamage effects.

Melatonin inhibits the Migration of Colon Cancer RKO cells by Down-regulating Myosin Light Chain Kinase Expression through Cross-talk with p38 MAPK

  • Zou, Duo-Bing;Wei, Xiao;Hu, Ruo-Lei;Yang, Xiao-Ping;Zuo, Li;Zhang, Su-Mei;Zhu, Hua-Qing;Zhou, Qing;Gui, Shu-Yu;Wang, Yuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.5835-5842
    • /
    • 2015
  • Background: Melatonin, which is mainly produced by the pineal gland, has a good inhibitory effect on cell growth of multiple cancer types. However, the underlying molecular mechanisms of anti-tumor activity for colon cancer have not been fully elucidated. In this study, we investigated the effects of melatonin on migration in human colon cancer RKO cells and the potential molecular mechanisms. Materials and Methods: The viability of RKO cells was investigated by MTT assay after treatment with melatonin, SB203580 (p38 inhibitor) and phorbol 12-myristate 13-acetate (PMA, MAPK activator) alone or in combination for 48h. The effects of melatonin, and ML-7, a selective inhibitor of myosin light chain kinase (MLCK), and SB203580, and PMA on the migration of RKO cells were analyzed by in vitro scratch-wound assay. The relative mRNA levels of MLCK was assessed by real-time quantitative RT-PCR. Western blotting analysis was performed to examine the expression of MLCK, phosphorylation of myosin light chain (pMLC) and p38 (pp38). Results: The proliferation and migration of human colon cancer RKO cells were inhibited significantly after treatment with melatonin. The expression levels of MLCK and phosphorylation of MLC of RKO cells were reduced, and real-time quantitative RT-PCR showed that melatonin had significant effects on suppressing the expression of MLCK. Furthermore, the phosphorylation level of p38, which showed the same trend, was also reduced when cells were treated by melatonin. In addition, ML-7 (25umol/l) could down-regulate the phosphorylation of p38. Conclusions: Melatonin could inhibit the proliferation and migration of RKO cells, and further experiments confirmed that p38 MAPK plays an important role in regulating melatonin-induced migration inhibition through down-regulating the expression and activity of MLCK.

LncRNA H19/miR-29b-3p/PGRN Axis Promoted Epithelial-Mesenchymal Transition of Colorectal Cancer Cells by Acting on Wnt Signaling

  • Ding, Dayong;Li, Changfeng;Zhao, Tiancheng;Li, Dandan;Yang, Lei;Zhang, Bin
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.423-435
    • /
    • 2018
  • This investigation was aimed at working out the combined role of lncRNA H19, miR-29b and Wnt signaling in the development of colorectal cancer (CRC). In the aggregate, 185 CRC tissues and corresponding para-carcinoma tissues were gathered. The human CRC cell lines (i.e. HT29, HCT116, SW480 and SW620) and normal colorectal mucosa cell line (NCM460) were also purchased. Si-H19, si-NC, miR-29b-3p mimics, miR-29b-3p inhibitor, si-PGRN and negative control (NC) were, respectively, transfected into the CRC cells. Luciferase reporter plasmids were prepared to evaluate the transduction activity of $Wnt/{\beta}-catenin$ signaling pathway, and dual-luciferase reporter gene assay was arranged to confirm the targeted relationship between H19 and miR-29b-3p, as well as between miR-29b-3p and PGRN. Finally, the proliferative and invasive capacities of CRC cells were appraised through transwell, MTT and scratch assays. As a result, overexpressed H19 and down-expressed miR-29b-3p displayed close associations with the CRC patients' poor prognosis (P < 0.05). Besides, transfection with si-H19, miR-29b-3p mimic or si-PGRN were correlated with elevated E-cadherin expression, decreased snail and vimentin expressions, as well as less-motivated cell proliferation and cell metastasis (P < 0.05). Moreover, H19 was verified to directly target miR-29b-3p based on the luciferase reporter gene assay (P < 0.05), and miR-29b-3p also bound to PGRN in a direct manner (P < 0.05). Finally, addition of LiCl ($Wnt/{\beta}-catenin$ pathway activator) or XAV93920 ($Wnt/{\beta}-catenin$ pathway inhibitor) would cause remarkably altered E-cadherin, c-Myc, vimentin and snail expressions, as well as significantly changed transcriptional activity of ${\beta}-catenin/Tcf$ reporter plasmid (P < 0.05). In conclusion, the lncRNA H19/miR-29b-3p/PGRN/Wnt axis counted a great deal for seeking appropriate diagnostic biomarkers and treatment targets for CRC.

Kinesin superfamily member 15 knockdown inhibits cell proliferation, migration, and invasion in nasopharyngeal carcinoma

  • Yi Cai;Qianyue Lai;Xuan Zhang;Yu Zhang;Man Zhang;Shaoju Gu;Yuan Qin;Jingshen Hou;Li Zhao
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.5
    • /
    • pp.457-470
    • /
    • 2023
  • The aim of this study was to investigate the role of kinesin superfamily member 15 (KIF15) in nasopharyngeal carcinogenesis (NPC) and explore its underlying mechanisms. We employed various assays, including the CCK-8 assay, flow cytometry, the Transwell and scratch assay, Western blotting, and nude mice transplantation tumor, to investigate the impact of KIF15 on NPC. Our findings demonstrate that KIF15 plays a critical role in the proliferation, apoptosis, migration, and invasion of NPC cells. Furthermore, we discovered that silencing KIF15 inhibits cell proliferation, migration, and invasion while promoting apoptosis, and that KIF15's effect on NPC cell growth is mediated through the PI3K/AKT and P53 signaling pathways. Additionally, we showed that KIF15 promotes nasopharyngeal cancer cell growth in vivo. Our study sheds light on the significance of KIF15 in NPC by revealing that KIF15 knockdown inhibits NPC cell growth through the regulation of AKT-related signaling pathways. These findings suggest that KIF15 represents a promising therapeutic target for the prevention and treatment of NPC.