• Title/Summary/Keyword: scraps

Search Result 142, Processing Time 0.015 seconds

Optimization of Synthesis Conditions for Improving Ti3AlC2 MAX Phase Using Titanium Scraps (타이타늄 스크랩 활용 Ti3AlC2 MAX 상분율 향상을 위한 합성 조건 최적화)

  • Taeheon Kim;Jae-Won Lim
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.22-30
    • /
    • 2024
  • To synthesize the Ti3AlC2 MAX phase, a crucial precursor for generating the two-dimensional material MXene, the use of Ti scrap as an initial material is an economically feasible approach. This study aims to optimize the synthesis conditions for the phase fraction of the Ti3AlC2 MAX phase utilizing Ti scrap as the Ti source. The deoxidation of Ti powders, prepared through the hydrogenation-dehydrogenation process from Ti scrap, was effectively accomplished using the deoxidation in solid-state (DOSS) process. The optimal synthesis conditions were established by blending DOSS-Ti, Al, and graphite powders with particle sizes ranging from 25 ~ 32 ㎛ in a molar ratio of 3:1.1:2. The resulting phase fractions were as follows: Ti3AlC2 at 97.25 wt.%, TiC at 0.93 wt.%, and Al3Ti at 1.82 wt.%. Furthermore, the oxygen content of the Ti3AlC2 MAX powder, spanning from 25 ~ 45 ㎛, was measured at 4,210 ppm.

A Study on the Trend and Utilization of Stone Waste (석재폐기물 현황 및 활용 연구)

  • Chea, Kwang-Seok;Lee, Young Geun;Koo, Namin;Yang, Hee Moon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.333-344
    • /
    • 2022
  • The quarrying and utilization of natural building stones such as granite and marble are rapidly emerging in developing countries. A huge amount of wastes is being generated during the processing, cutting and sizing of these stones to make them useable. These wastes are disposed of in the open environment and the toxic nature of these wastes negatively affects the environment and human health. The growth trend in the world stone industry was confirmed in output for 2019, increasing more than one percent and reaching a new peak of some 155 million tons, excluding quarry discards. Per-capita stone use rose to 268 square meters per thousand persons (m2/1,000 inh), from 266 the previous year and 177 in 2001. However, we have to take into consideration that the world's gross quarrying production was about 316 million tons (100%) in 2019; about 53% of that amount, however, is regarded as quarrying waste. With regards to the stone processing stage, we have noticed that the world production has reached 91.15 million tons (29%), and consequently this means that 63.35 million tons of stone-processing scraps is produced. Therefore, we can say that, on a global level, if the quantity of material extracted in the quarry is 100%, the total percentage of waste is about 71%. This raises a substantial problem from the environmental, economical and social point of view. There are essentially three ways of dealing with inorganic waste, namely, reuse, recycling, or disposal in landfills. Reuse and recycling are the preferred waste management methods that consider environmental sustainability and the opportunity to generate important economic returns. Although there are many possible applications for stone waste, they can be summarized into three main general applications, namely, fillers for binders, ceramic formulations, and environmental applications. The use of residual sludge for substrate production seems to be highly promising: the substrate can be used for quarry rehabilitation and in the rehabilitation of industrial sites. This new product (artificial soil) could be included in the list of the materials to use in addition to topsoil for civil works, railway embankments roundabouts and stone sludge wastes could be used for the neutralization of acidic soil to increase the yield. Stone waste is also possible to find several examples of studies for the recovery of mineral residues, including the extraction of metallic elements, and mineral components, the production of construction raw materials, power generation, building materials, and gas and water treatment.