• Title/Summary/Keyword: scramjet combustor

Search Result 77, Processing Time 0.02 seconds

Generation and Suppression of Non-uniform Flow in Scramjet Engines

  • Ben, Hidenori;Watanabe, Toshinori
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.69-74
    • /
    • 2004
  • In scramjet engines with sidewall compression inlet, it is well known that a non-uniform flow appears since a separated region is generated near the flow centerline on the body side. The separated region is caused by shock-boundary layer interaction and likely to cause un-start phenomena since the flow in the separated region is subsonic and acts as a communication path between the isolator and the combustor. In the present study, the non-uniform flow characteristics in the scramjet inlet-isolator region are numerically studied in detail. Effect of flow suction from body sidewall surface on the non-uniform flow field numerically examined to clarify the flow mechanism to suppress the un-start transition.

  • PDF

Research Activities and Directions of Turbulent Combustion and Hydrocarbon Fuels in Scramjet Engine (스크램제트 엔진의 난류 연소 및 탄화수소 연료 연구 및 방향)

  • Choi, J.Y.;Parent, Bernard;Won, S.H.;Lee, S.H.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.330-333
    • /
    • 2008
  • Present paper introduces the research activities on fuel-air mixing and combustion of supersonic turbulent flows in scramjet combustor carried out in Aerospace Combustion and Propulsion Laboratory of the department of Aerospace Engineering of the Pusan national University. Also, an introduction will be given to the characteristics of the supercritical hydrocarbon fuel combustion in a practical scramjet engine and its numerical modeling approaches.

  • PDF

Large-Eddy Simulation based Eulerian PDF Approach for the Simulation of Scramjet Combustors (대와류모사 기법과 확률밀도함수를 이용한 스크램제트 연소부에서의 연소 현상 연구)

  • Koo, Heeseok
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.355-357
    • /
    • 2012
  • A probability density function (PDF) approach to account for turbulence-chemistry interaction in the context of large eddy simulation (LES) based simulation of scramjets is developed. To solve the high-dimensional joint-composition PDF transport equation robustly, the semi-discrete quadrature method of moments (SeQMOM) is recently proposed [1]. The SeQMOM approach addresses key numerical issues in LES related to the inaccuracies in computing filter-scale gradients, enabling an efficient and numerically consistent solution of the PDF transport equation. The computational tool is used to simulate a cavity-stabilized Mach 2.2 supersonic combustor.

  • PDF

An Experimental Study of Shock Wave Effects on the Model Scramjet Combustor (모델 스크램제트 연소기에서 충격파 영향에 대한 실험적 연구)

  • 허환일
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.65-71
    • /
    • 1999
  • An experimental study was carried out in order to investigate the effect of shock waves on the supersonic hydrogen-air jet flames stabilized in the Mach 2.5 model scramjet combustor. This experiment was the first reacting flow experiment interacting with shock waves. Two identical $10^{\cire}$ wedges were mounted on the diverging sidewalls of the combustor in order to produce oblique shock waves that interacted with the flame. Schlieren visualization pictures, wall static pressures, and combustion efficiency at two different air stagnation temperatures were measured and compared to corresponding flames without shock wave-flame interaction. It was observed that shock waves significantly altered the shape of supersonic jet flames, but had different effects on combustion efficiency depending on air temperatures. At the higher air stagnation temperature and higher fuel flow rates, combustion of efficiency showed a better result.

  • PDF

Analytical Study on Performance Parameters of High Speed Propulsion (Ramjet/Scramjet) (초고속 순항 추진기관(램제트/스크램제트)의 성능인자에 대한 해석적 연구)

  • Byun Jong-Ryul;Sung Hong-Gye;Yoon Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.141-146
    • /
    • 2005
  • This paper presents a theoretical analysis of a ramjet and scramjet engine according to flight Mach numbers. The main objective of this study is to give physical understanding on the performance parameters and to provide a more unified treatment of the fundamentals of ramjet and scramjet propulsion, mainly based on analytical methods. The effects of flight Mach number, inlet characteristics, and combustion on the performance of ramjet and scramjet are analysed. The cycle analysis are conducted on both combustors with constant pressure and with constant cross-section area, on which comparisons are made. Also the optimal Mach number at the entry of the combustor is studied.

  • PDF

Development of a Direct-Connected Supersonic Combustor Test Facility (직결형 초음속 연소기 시험 설비 개발)

  • Yang, Inyoung;Lee, Kyung-jae;Lee, Yang-ji;Kim, Hyung-Mo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.290-293
    • /
    • 2017
  • A direct-connected, continuous type combustion test facility was developed to test a supersonic combustor model used in scramjet engines. The facility requirements were determined by assuming the flight speed of Mach 5, yielding the combustor inlet flow speed of Mach 2. Also the cross-section of the supersonic combustor under test was assumed as $32mm{\times}70mm$. As a result, the facility was designed to have the flow total pressure of 548 kPaA, total temperature of 1,320 K, and flow rate of 0.776 kg/s. The facility consists of a turbo type air compressor, electric air heater, vitiation air heater and a two dimensional facility nozzle to accelerate the flow to Mach 2. Also, an oxygen supply system was added to compensate the vitiation. The exhaust de-pressurization system is not added. Designed pressure, temperature, and flow rate were verified through the test operation of the facility.

  • PDF

Design Procedures of SCRamjet Engine Intake and Numerical Analysis (스크램제트 엔진 흡입구의 설계 및 3차원 성능해석)

  • Kang, Sang-Hun;Shin, Hun-Bum;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.339-343
    • /
    • 2006
  • Model SCRamjet Engine intake is designed for Ground test. The designed Intake provides hot and slow flow with the combustor. Flow separation is controlled by the shock wave segregation based on the Korekegi criteria. With Kantrowitz limit analysis, side wall cut out region is also set for the self start.

  • PDF

Combustion Characteristics of Hypersonic SCRamjet Engine (극초음속 스크램제트 엔진의 연소특성)

  • Won, Su-Hee;Jeong, Eun-Ju;Jeung, In-Seuck;Choi, Jeong-Yeol
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.159-165
    • /
    • 2003
  • This paper describes numerical efforts to characterize the flame-holding and air-fuel mixing process of model SCRamjet engine combustor, where a hydrogen jet injected into a supersonic cross flow and in a cavity. Combustion phenomena in a model SCRamjet engine, which has been experimentally studied at University of Queensland and Australian National University using a free-piston shock tunnel, was observed around separation region of upstream of the normal injector and inside of cavity. The results show that the separation region and cavity generates several recirculation zones, which increase the fuel-air mixing. Self ignition occurs in the separation-freestream and cavity-freestream interface.

  • PDF

Performance Load Balancing and Sensitivity Analysis of Ramjet/Scramjet for Dual-Combustion/Dual-Mode Ramjet Engine Part I. Performance Load Balancing (이중램제트(이중연소/이중모드)엔진을 위한 램제트/스크램제트의 작동영역분배 및 성능민감도분석 Part I. 작동영역분배)

  • Kim, Sun-Kyoung;Jeon, Chang-Soo;Sung, Hong-Gye;Byen, Jong-Ryul;Yoon, Hyun-Gull
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.586-595
    • /
    • 2010
  • An analytical study based on physical understandings and aero-thermodynamic theories was conducted to observe the performance characteristics and to derive the essential design parameters of dual ramjet(dual-combustion/dual-mode) propulsion for wide Mach number. The performances and operating limitations of the engines with two types combustors, such as constant pressure- and constant area- combustor, over various flight Mach numbers was investigated. Finally, the transition Mach number from ramjet to scramjet was carried out to optimize performance load balancing of ramjet and scramjet.

Experimental Studies on Scramjet Tested in a Freejet Facility

  • Chang, Xinyu;Chen, Lihong;Gu, Hongbin;Yu, Gong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.34-40
    • /
    • 2004
  • Two different type scramjet models with side-wall compression and top-wall compression inlets have been tested in HPTF (Hypersonic Propulsion Test Facility) under the experimental conditions of Mach number 5.8, total temperature 1700K, total pressure 4.5㎫ and mass flow rate 3.5kg/s. The liquid kerosene was used as main fuel for the scramjets. In order to get fast ignition in the combustor, a small amount of hydrogen was used as a pilot. A strut with alternative tail was employed for increasing the compression ratio and for mixing enhancement in the side-wall compression case. Recessed cavities were used as a flameholder for combustion stability. The combustion efficiency was estimated by one dimensional theory. The uniformity of the facility nozzle flow was verified by a scanning pitot rake. The experimental results showed that the kerosene fuel was successfully ignited and stable combustion was achieved for both scramjet models. However the thrusts were still less than the model drags due to the low combustion efficiencies.

  • PDF