• Title/Summary/Keyword: scientific conceptions

Search Result 127, Processing Time 0.03 seconds

The Analyses of the Change Process of Students' Physics Conceptions by the Types of Conflict Situations (갈등상황 제시 유형에 따른 학생 개개인의 물리 개념 변화 과정 경로 분석)

  • Kim, Ji-Na;Lee, Young-Jick;Kwon, Jae-Sool
    • Journal of The Korean Association For Science Education
    • /
    • v.20 no.1
    • /
    • pp.77-87
    • /
    • 2000
  • The purpose of the study is to understand the change process of middle school students' physics conceptions by the presented types of conflict situations. 274 middle school students were selected from one school in Pusan, however 257 students were participated in all the procedure of the study. After we classified students' physics conceptions into scientific and unscientific conceptions, presented three types of conflict situations. In this study three different cognitive conflict strategies were adopted; the first one is logical arguments(LCS: logical conflict situation), the second is actual demonstration(DCS: demonstrational conflict situation), and the third is two strategies together(DLCS). In this study, first, we investigated the change process of students' physics conceptions by three types of conflict situations. Second, we compared the effect of three conflict situations presentation, which includes positive effect by conceptual change from misconception to scientific conception and negative effect by conceptual change from scientific conception to misconception. Third, we studied characteristics of conceptual change by characteristics of conflict situations. In result, DLCS group and DCS group were more positive effect than LCS group in mechanics, DLCS group and LCS group were more positive effect than DCS group in electricity. It seems that mechanics are closely related to physical experiences, while electricity are more abstract.

  • PDF

A Study on The Effect of Molecular Movement Model Based Instruction on High School Students' Conceptions of diffusion and Osmosis (확산과 삼투 분자운동 모형을 활용한 수업의 개념변화에의 효과)

  • Cho, Jung-Il;Lee, Hyung-Uk
    • Journal of The Korean Association For Science Education
    • /
    • v.14 no.3
    • /
    • pp.293-303
    • /
    • 1994
  • The purpose of this study was to find the effect of molecular movement model based instruction on high school students' conceptions of diffusion and osmosis. The study was composed of two groups, the traditional instruction group in which the so-called traditional instruction was performed, and the other group in which interventions by researchers were made. The subjects of the traditional instruction group consisted of a total of 242 high school students from Seoul, Gwangju and Mokpo. The subjects of the model based instruction group consisted of 177 first-year high school students in Mokpo. The study was focused on the use of the term of 'molecular movement' in their explanation of diffusion and osmosis in the correct contexts. In general, students who got the molecular movement model based instruction showed more frequent use of the terms of 'molecular movement' in the correct contexts than the control group students did. It was found that misconceptions including teleological explanations changed into scientific explanations by the intervention. It seemed that the molecular movement model led students to make scientific explanations on natural phenomena. A further research is recommended to assess the improvement of teleological explanation and scientific attitude by the molecular movement model.

  • PDF

An Investigation of Elementary School Teachers학 Conceptions on Buoyancy (부력 개념에 관한 초등학교 교사들의 이해도 조사)

  • 이형철;이순자
    • Journal of Korean Elementary Science Education
    • /
    • v.19 no.1
    • /
    • pp.145-156
    • /
    • 2000
  • Elementary school teachers' understandings about buoyancy were investigated through the questionnaire method. The questionnaire was composed of 4 questions on hydraulic pressure and 8 questions on buoyancy. The questions on buoyancy asked about the correlation of buoyancy with following basic concepts, density of liquid, volume of submerged object and so forth. 295 teachers on the 22 elementary schools in Busan, Yangsan and Gimhae were selected through random sampling method. The results of this study were summarized as follows: On the correlation of the magnitude and direction of hydraulic pressure with the depth of water, a large portion of the respondents had a scientific conception. But on the correlation of hydraulic pressure with density, the relatively small portion of them appeared to have a scientific conception. The respondents, on the whole, had a scientific conception about the correlation of buoyancy with density of liquid. But they seemed to have naive conceptions about the correlation of buoyancy with the volume of a submerged object and with the depth of water, the amount of water in container and the reduced amount of water by the object from container. We found that the respondents were context dependent and tended to search for solutions for the questions of buoyancy using the concept of pressure in the water. From above results, we suggested that in the would-be revised elementary science text book, the contents of pressure in the water should be introduced after the concept of weight in the water was gained.

  • PDF

The Types of Secondary School Students' Preconceptions on the Motion of the Earth and the Moon (계통도를 이용한 중.고등학생의 지구와 달의 운동에 관한 개념 유형 연구)

  • Woo, Jong-Ok;Lee, Hang-Ro;Min, Jun-Gyu
    • Journal of The Korean Association For Science Education
    • /
    • v.15 no.4
    • /
    • pp.379-393
    • /
    • 1995
  • In spite of school science learning, the students' conceptions have not been changed easily. Therefore, to make students overcome their non scientific conceptions has been an important issue in science education. The purpose of this study was to identify the conceptions of students and teachers on the motion of the earth and the moon. The instrument was developed for estimating students' understandings of the concepts related to the motion of the earth and the moon. The validity of the instrument was examined by the specialists in Science Educator and Astronomer. At the same time, the two field trials had been executed, and the items were modified. Also, it consists of 12 items including 9 two-tier multiple choice items and 3 multiple choice items. The population of this study consists of 250 eighth-, 299 tenth-, 292 eleventh-grade students, 134 science teachers in secondary school. SPSS/PC+ was adopted for the statistical analysis. The type of misconceptions possessed students were as follows: 1) At 12:00 noon, the sun is directly overhead. 2) First quarter moon is a half of overall surface of the moon. 3) Air don't rotate with the earth surface because it keeps apart from the earth surface. 4) Summer is warmer than winter, because the earth is nearer from the sun in summer. 5) Whenever season is changed, the direction of rotation axis of the earth is changed. 6) The moon is the brightest at the position of new moon, because the distance between the moon and the sun is the shortest and the moon is received strongest sunlight. 7) The moon is not seen at the position of real full moon, because it is covered with shadow of the earth. 8) When the moon is not seen in the earth, sunlight is not reached at the moon. The major findings were as follows : 1) The middle school students had more misconceptions than those of high school students. And female students had more misconceptions than those of male ones. 2) The rate of correct answer and the type of conception in the tenth grade students were very similar with eleventh grade students. 3) The higher cognitive level, the better development of scientific conception and the less misconception. Also, the correlation coefficient between scientific conception score and GALT score was 0.57. 4) The students in scientific part had higher the rate of correct answer than those of students in human part and the former had less misconception than the latter. 5) The rate of correct answer about model and figure items was lower than descriptive ones, because they did not understand about figures itselves. These types of misconceptions will be used for science instruction and studies of other conceptions need.

  • PDF

An Analysis of Elementary Pre-service Teachers' Pedagogical Reasoning about Students' Dissolution and Solution Conceptions (학생의 용해와 용액 개념에 대한 초등 예비교사의 교육적 추론 분석)

  • Song, Nayoon;Yoon, Hye-Gyoung
    • Journal of Korean Elementary Science Education
    • /
    • v.42 no.1
    • /
    • pp.64-81
    • /
    • 2023
  • In this study, we analyzed pre-service teachers' levels of pedagogical reasoning while watching video clips of elementary school students' discussions of their conceptions of solution and dissolution. 81 pre-service teachers participated in the study. It was found that many pre-service teachers had scientific conceptions, and pre-service teachers who had non-scientific conceptions showed misconceptions similar to those of elementary school students. In both conceptions, pre-service teachers partially or comprehensively interpreted the students' misconceptions with reference to the evidence. However, the rates of pre-service teachers who misinterpreted or simply restated the students' utterances were quite high. Many pre-service teachers suggested only one factor related to levels of reasoning about causes of misconceptions, and most suggested factors were related to the student factor. The level of reasoning about instructional decisions differed according to dissolution and solution conceptions. Actions linked to students' thinking were more closely related to students' specific thinking than to their generic thinking, and among these, student-centered action was seen. From the above results, we sought ways of improving pre-service teachers' pedagogical reasoning.

Development and Application of Tutorial for Conceptual Change on Object Recognition of Scientific Gifted in Elementary School (초등과학 영재의 물체 인식 개념 변화를 위한 튜토리얼의 개발과 적용)

  • Lee, Ji-Won;Kim, Jung-Bok
    • Journal of Korean Elementary Science Education
    • /
    • v.30 no.3
    • /
    • pp.340-352
    • /
    • 2011
  • The purpose of this study was to analyze effects of teaching materials for elementary science gifted conception about object recognition. Elementary science gifted have misconceptions that they can see in lightness. They can not explain how a shadow is made. This paper reports in-depth investigation on elementary science gifted's understanding of object recognition focusing on process of light. A program is developed to elementary science gifted in the subject matter. The tutorial emphasizing the process of light consists of pre-test, worksheet, and post-test. The Tutorial has 4 steps; darkness and light, light on things, light reached eyes, structure of the eyes. Each steps has 2~4 experiments. Through the tutorial, we expect their misconceptions can be changed into scientific conceptions. For the research and analysis, a questionnaire is posed to 39 elementary science gifted at M Elementary School in D Metropolitan City. The first method of product analysis makes a comparative study of pre-test, post-test score, and hake gain each test. As a result, total score of all student was raised. And hake gain of pre-test(II) is 0.6, hake gain of post-test is 0.68. It is Medium gain. Also, elementary science gifted could understand how we see through the tutorial emphasizing process of light. And their misconceptions can be changed into scientific conceptions.

The Effects of Teachers' Philosophical Perspectives of Science on Their Students' Conceptions of the Nature of Science (과학교사들의 과학철학적 관점이 중학생들의 과학의 본성 개념에 미치는 영향)

  • Soh, Won-Ju;Kim, Beom-Ki;Woo, Jong-Ok
    • Journal of The Korean Association For Science Education
    • /
    • v.18 no.1
    • /
    • pp.109-121
    • /
    • 1998
  • Scientific literacy implies an adequate understanding of the nature of science. However, little is known about factors that can influence students' conceptions of the nature of science. The purpose of this study was to test the validity of the prevalent assumption that teachers' philosophical perspectives of science directly influence their students' conceptions of the nature of science. A comparison between science teachers' and students' perspectives of science did not support the assumption that a science teachers' perspectives of science is significantly related to students' conceptions of science. The data clearly indicated that there was no relationship between teachers' philosophical perspectives and those of their students. The results convincingly indicated that the nature of science was not being considered or taught to students as a consequence of students' needs and curriculum guide objectives. It is believed that the results of this investigation will help to redirect the focus of future efforts to promote more adequate conceptions of the nature of science in our secondary schools.

  • PDF

A Study of Kindergarden, Elementary, and Middle School Students' Conception Types and Trend of Grade Related to Evaporation and Conditions of Evaporation Activities (증발과 증발 조건에 관한 활동에서 유.초.중학교 학생들의 개념 유형 및 학년별 경향성에 관한 연구)

  • Cho, Boo-Kyung;Ko, Young-Mi;Kim, Hyo-Nam;Paik, Seong-Hey;Park, Jae-Won;Park, Jin-Ok;Im, Myoung-Hyuk
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.2
    • /
    • pp.286-298
    • /
    • 2002
  • This study was to investigate the K-8 grade students' conception types and trend of grade related to evaporation and conditions of evaporation activities. Twenty-five students were random sampled and they were interviewed in-depth during designed activities related to evaporation and conditions of evaporation. The data were analyzed qualitatively. The students' conceptions related to evaporation activities were divided into 5 types. The conceptions related to conditions of evaporation were divided into 5 types, too. Students' conceptions gradually changed to scientific conceptions with grade. But alternative conceptions were continued also.

Middle School Student's Evidence Evaluation (중학생들의 빛과 그림자에 대한 증거 평가)

  • Park, Jong-Won;Chang, Byung-Gi;Yoon, Hyeg-Young;Pak, Sung-Jae
    • Journal of The Korean Association For Science Education
    • /
    • v.13 no.2
    • /
    • pp.135-145
    • /
    • 1993
  • This study investigated student's prior conceptions and evidence evaluation about Light and shadow. One hundred twenty six students were given Explanation-after-choice type Questions to investigate student' prior conceptions and Choicd type Question to identify student's idea about scientific method and characteristics od observation. Forty-four of the 126 students were interviewed to explore student's evidence evaluation. Eighty students (63.5%) thought that the shape of material affected the shape of shadow but the shape of light source did not Only 58.8 precents of all responses were evidence-based responses. Characteristics of evidence affected student's evidence evaluation : student made evidence-based responsed to the accord evidence more frequently than discord evidence. Among evidence-based response to the discord evidence. 35.5% of responses were the case that student felt cognitive conflict or explored other variables by recognizing discord between his/her own ideas and evidence or distort the evidence. Student's idea about characteristics of observation did not affect the evidence evaluation, but student's idea about scientific method affected the evidence evaluation.

  • PDF

Development of an Assessment Formula for Scientific Creativity and Its Application (과학창의성 평가 공식의 개발과 적용)

  • Lim, Chae-Seong
    • Journal of Korean Elementary Science Education
    • /
    • v.33 no.2
    • /
    • pp.242-257
    • /
    • 2014
  • Researchers have employed a diversity of definitions and measurement methods for creativity. As a result, creativity research is underrepresented in the literature and the findings of different studies often prove difficult to draw into a coherent body of understanding. With regard to assessment, there are some important problems both in creativity research and practice, such as originality bias and Big-C creativity bias in teachers' perceptions about creativity and creative thinking, and additive rather than multiplicative scoring systems of creativity assessment. Drawing upon most widely accepted conceptions of the creativity construct, I defined 'student's scientific creativity' as the ability to make a product both original and useful to the student in terms of little-c creativity, and 'scientist's scientific creativity' as the ability to come up with a product both original and useful to the science community in terms of Big-C creativity. In this study, an 'Assessment Formula for Scientific Creativity' was developed, which is consisted of the multiplication of originality and usefulness scores rather than the sum of the two scores, and then, with scores calculated from the assessment formula, the scientific explanations generated by children were categorized into four types: routine, useful, original, and creative types. The assessment formula was revealed to be both valid and reliable. The implications of the assessment formula for scientific creativity are examined. The new assessment formula may contribute to the comprehensive understanding of scientific creativity to guide future research and the appropriate interpretation of previous studies.