• Title/Summary/Keyword: science simulation

Search Result 11,016, Processing Time 0.039 seconds

Establishment and service of user analysis environment related to computational science and engineering simulation platform

  • Kwon, Yejin;Jeon, Inho;On, Noori;Seo, Jerry H.;Lee, Jongsuk R.
    • Journal of Internet Computing and Services
    • /
    • v.21 no.6
    • /
    • pp.123-132
    • /
    • 2020
  • The EDucation-research Integration through Simulation On the Net (EDISON) platform, which is a web-based platform that provides computational science and engineering simulation execution environments, can offer various analysis environments to students, general users, as well as computational science and engineering researchers. To expand the user base of the simulation environment services, the EDISON platform holds a challenge every year and attempts to increase the competitiveness and excellence of the platform by analyzing the user requirements of the various simulation environment offered. The challenge platform system in the field of computational science and engineering is provided to users in relation to the simulation service used in the existing EDISON platform. Previously, EDISON challenge servicesoperated independently from simulation services, and hence, services such as end-user review and intermediate simulation results could not be linked. To meet these user requirements, the currently in-service challenge platform for computational science and engineering is linked to the existing computational science and engineering service. In addition, it was possible to increase the efficiency of service resources by providing limited services through various analyses of all users participating in the challenge. In this study, by analyzing the simulation and usage environments of users, we provide an improved challenge platform; we also analyze ways to improve the simulation execution environment.

Design and Effects of Science Simulation Applications Using Flash and ActionScript 3.0: In the Composition of Material Chapter in Middle School Science Textbooks (Flash와 Actionscript 3.0을 이용한 과학 시뮬레이션 앱의 디자인 및 효과 -중학교 과학 '물질의 구성' 단원을 중심으로-)

  • Lee, Chang Youn;Park, Chulkyu;Hong, Hun-Gi
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.4
    • /
    • pp.527-539
    • /
    • 2018
  • Although a simulation is proposed as a candidate for alternative contents of inquiry activities, design cases focused on the characteristic of science education are rare. This study suggested the definition and requirements of science simulation to clarify science subject-specific design and set up the design guidelines to consider usability. Then the science simulation was developed in the form of an app for mobile devices, where 'Flash and Actionscript 3.0' was selected as a development tool for compatibility, functionality, ease of use and optimization for mobile devices with educational applicability in mind. In effect, six science simulation apps were prepared for seven classes of inquiry activity in 10 science classes on the chapter of 'composition of material' in middle school science 2 textbooks. In this regard, the main advantages of the simulation apps expected from each design characteristic are also suggested in this article. In the implementation of the science simulation apps, educational effects were investigated based on the statistical comparison, while 134 students in the second grade in a coeducational middle school, Gyeonggi-do participated as an intervention group and a control group. Our results showed that the scores of academic achievement and affective test in the intervention group were significantly higher than those of the control group (p <.05). In the questionnaire survey on usability, most students responded positively to the design of the science simulation apps. This study will contribute to expanding the horizon of design about science simulation as a design case in science education.

A Study of Vehicle Fuel Consumption Simulation using VHDL-AMS Multi-domain Simulation

  • Abe, Takashi;Takakura, Shikoh;Higuchi, Tsuyoshi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.232-238
    • /
    • 2013
  • The vehicle system is a multi-domain system that requires many branches of science and engineering. Therefore the development of the vehicle system requires the use of design methodologies that utilize simulations, which have grown increasingly sophisticated in recent years. Our research group proposed a simulation modeling method based on the VHDL-AMS language. This paper describes how VHDL-AMS is used to model of vehicle fuel consumption simulation. The fuel consumption is shown using proposed simulation model on the Japanese 10-15 mode. We examine the influence of the vehicle system with electrical load and hill climb resistance in the vehicle running resistance.

A Study on Workbench-based Dynamic Service De-sign and Construction of Computational Science Engineering Platform (계산과학공학 플랫폼의 워크벤치 기반 동적 서비스 설계 및 구축에 관한 연구)

  • Kwon, Yejin;Jeon, Inho;Ma, Jin;Lee, Sik;Cho, Kum Won;Seo, Jerry
    • Journal of Internet Computing and Services
    • /
    • v.19 no.3
    • /
    • pp.57-66
    • /
    • 2018
  • EDISON ( EDucation-research Integration through Simulation On the Net) is a web simulation service based on cloud compu-ting. EDISON provides that web service and provide analysis result to users through pre-built infrastructure and various calcu-lation nodes computational science engineering problems that are difficult or impossible to analysis as user's personal resources to users. As a result, a simulation execution environment is provided in a web portal environment so that EDISON can be ac-cessed regardless of a user's device or operating system to perform computational science engineering analysis simulation. The purpose of this research is to design and construct a workbench based real - time dynamic service to provide an integrat-ed user interface to the EDSION system, which is a computational science engineering simulation and analysis platform, which is currently provided to users. We also devised a workbench-based user simulation service environment configuration. That has a user interface that is similar to the computational science engineering simulation software environment used locally. It can configure a dynamic web environment such as various analyzers, preprocessors, and simulation software. In order to provide these web services, the service required by the user is configured in portlet units, and as a result, the simulation service using the workbench is constructed.

Radioactive gas diffusion simulation and inhaled effective dose evaluation during nuclear decommissioning

  • Yang, Li-qun;Liu, Yong-kuo;Peng, Min-jun;Ayodeji, Abiodun;Chen, Zhi-tao;Long, Ze-yu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.293-300
    • /
    • 2022
  • During the decommissioning of the nuclear facilities, the radioactive gases in pressure vessels may leak due to the demolition operations. The decommissioning site has large space, slow air circulation, and many large nuclear facilities, which increase the difficulty of workers' inhalation exposure assessment. In order to dynamically evaluate the activity distribution of radionuclides and the committed effective dose from inhalation in nuclear decommissioning environment, an inhalation exposure assessment method based on the modified eddy-diffusion model and the inhaled dose conversion factor is proposed in this paper. The method takes into account the influence of building, facilities, exhaust ducts, etc. on the distribution of radioactive gases, and can evaluate the influence of radioactive gases diffusion on workers during the decommissioning of nuclear facilities.

Application of Fuzzy Math Simulation to Quantitative Risk Assessment in Pork Production (돈육 생산공정에서의 정량적 위해 평가에 fuzzy 연산의 적용)

  • Im, Myung-Nam;Lee, Seung-Ju
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.589-593
    • /
    • 2006
  • The objective of this study was to evaluate the use of fuzzy math strategy to calculate variability and uncertainty in quantitative risk assessment. We compared the propagation of uncertainty using fuzzy math simulation with Monte Carlo simulation. The risk far Listeria monocytogenes contamination was estimated for carcass and processed pork by fuzzy math and Monte Carlo simulations, respectively. The data used in these simulations were taken from a recent report on pork production. In carcass, the mean values for the risk from fuzzy math and Monte Carlo simulations were -4.393 log $CFU/cm^2$ and -4.589 log $CFU/cm^2$, respectively; in processed pork, they were -4.185 log $CFU/cm^2$ and -4.466 log $CFU/cm^2$ respectively. The distribution of values obtained using the fuzzy math simulation included all of the results obtained using the Monte Carlo simulation. Consequently, fuzzy math simulation was found to be a good alternative to Monte Carlo simulation in quantitative risk assessment of pork production.

Moving Object Management System for Battlefield Simulation

  • Ahn, Yoon-Ae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.3
    • /
    • pp.663-675
    • /
    • 2004
  • A battlefield simulation is the evaluation and analysis of the battlefield area, based on the data for terrain, climate, unit's maneuver and tactics basically required in battlefield simulation. Because it is difficult for the military authorities to collect all of the information perfectly for the reason of communication technology, jamming, and tactics, the military authorities need the future moving status for the target units by using acquired moving information. Therefore, we propose a moving object management system that concurrently provides domain reasoning function for the battlefield simulation. In order to implement the proposed system, we show the data modeling of the moving object for the battlefield simulation, and propose an inference engine using domain rule base and spatiotemporal operation. Also, we analyze the query response rate by inference function to verify domain reasoning of the implemented system.

  • PDF

A simulation code generator for AGVS design (무인운반차시스템의 설계를 위한 시뮬레이션 코-드 작성시스템)

  • 김갑환;김판수;배종욱
    • Korean Management Science Review
    • /
    • v.11 no.1
    • /
    • pp.1-21
    • /
    • 1994
  • We usually use the simulation technique in the evaluation and the test of a design alternative of Automated Guided Vehicle System. In this paper, we introduce a simulation code generator which can assist simulation programmer in model development and programming. It consists of user interface, program editor, and program sorter. SIMAN is used as the target language.

  • PDF

Conceptual Change via Instruction based on PhET Simulation Visualizing Flow of Electric Charge for Science Gifted Students in Elementary School (전하이동을 시각화한 PhET 기반 수업을 통한 초등과학영재의 전류개념변화)

  • Lee, Jiwon;Shin, Eun-Jin;Kim, Jung Bog
    • Journal of Korean Elementary Science Education
    • /
    • v.34 no.4
    • /
    • pp.357-371
    • /
    • 2015
  • Even after learning electric current, elementary school students have various non-scientific conceptions and difficulties. Because flow of charge is not visible. Also elementary school students do not learn theory but phenomena, so they cannot transfer theoretical perspective to new situation. In this research, we have designed instruction based on PhET simulation visualizing flow of electric charge and applied it to 37 science-gifted students in elementary school for measuring conceptual understanding. As a result, six out of the seven Hake gains of question set are high gain and just one is middle gain because the students have understood the flow pattern of the charge through circuit elements such as light bulbs, wire, as well as battery with PhET simulation and it gives a chance to create various questions spontaneously about electric current. Also they become able to do spontaneous mental simulation without PhET simulation about flow of charges. This research, suggest that developed materials using PhET simulation could be used as not only program for gifted students in elementary school, but also the electrical circuit section in an elementary science curriculum.

Virtual Domino: Interactive Physics Simulation and Experience

  • Shahab, Qonita M.;Kwon, Yong-Moo;Ko, Hee-Dong
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.954-959
    • /
    • 2006
  • Virtual Reality simulation enables immersive 3D experience of a Virtual Environment. A simulation-based VE can be used to map real world phenomena into virtual experience. This research studies on the use of Newton's physics law to demonstrate the effects of forces upon object's falling movement, and their effects towards other fallible objects. A reconfigurable simulation enables users to reconfigure the parameters of the objects involved in the simulation, so that they can see different effects from the different configurations, such as force magnitude and distance between objects. This concept is suitable for a classroom learning of physics law. Preliminary implementation is done on a PC with a joystick for 4DOF movement. The graphics is implemented by SGI OpenGL Performer. A middleware called NAVERLib that consists of Performer's modules for easy XML-based configuration is used for management of visualization, network and devices connection, and where the engine of this domino simulation is attached.

  • PDF