• Title/Summary/Keyword: science modules

Search Result 955, Processing Time 0.023 seconds

GORENSTEIN WEAK INJECTIVE MODULES WITH RESPECT TO A SEMIDUALIZING BIMODULE

  • Gao, Zenghui;Ma, Xin;Zhao, Tiwei
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1389-1421
    • /
    • 2018
  • In this paper, we introduce the notion of C-Gorenstein weak injective modules with respect to a semidualizing bimodule $_SC_R$, where R and S are arbitrary associative rings. We show that an iteration of the procedure used to define $G_C$-weak injective modules yields exactly the $G_C$-weak injective modules, and then give the Foxby equivalence in this setting analogous to that of C-Gorenstein injective modules over commutative Noetherian rings. Finally, some applications are given, including weak co-Auslander-Buchweitz context, model structure and dual pair induced by $G_C$-weak injective modules.

On Semicommutative Modules and Rings

  • Agayev, Nazim;Harmanci, Abdullah
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.1
    • /
    • pp.21-30
    • /
    • 2007
  • We say a module $M_R$ a semicommutative module if for any $m{\in}M$ and any $a{\in}R$, $ma=0$ implies $mRa=0$. This paper gives various properties of reduced, Armendariz, Baer, Quasi-Baer, p.p. and p.q.-Baer rings to extend to modules. In addition we also prove, for a p.p.-ring R, R is semicommutative iff R is Armendariz. Let R be an abelian ring and $M_R$ be a p.p.-module, then $M_R$ is a semicommutative module iff $M_R$ is an Armendariz module. For any ring R, R is semicommutative iff A(R, ${\alpha}$) is semicommutative. Let R be a reduced ring, it is shown that for number $n{\geq}4$ and $k=[n=2]$, $T^k_n(R)$ is semicommutative ring but $T^{k-1}_n(R)$ is not.

  • PDF

GORENSTEIN FPn-INJECTIVE MODULES WITH RESPECT TO A SEMIDUALIZING BIMODULE

  • Zhiqiang Cheng;Guoqiang Zhao
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.29-40
    • /
    • 2024
  • Let S and R be rings and SCR a semidualizing bimodule. We introduce the notion of GC-FPn-injective modules, which generalizes GC-FP-injective modules and GC-weak injective modules. The homological properties and the stability of GC-FPn-injective modules are investigated. When S is a left n-coherent ring, several nice properties and new Foxby equivalences relative to GC-FPn-injective modules are given.

Identification of Specific Gene Modules in Mouse Lung Tissue Exposed to Cigarette Smoke

  • Xing, Yong-Hua;Zhang, Jun-Ling;Lu, Lu;Li, De-Guan;Wang, Yue-Ying;Huang, Song;Li, Cheng-Cheng;Zhang, Zhu-Bo;Li, Jian-Guo;Xu, Guo-Shun;Meng, Ai-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4251-4256
    • /
    • 2015
  • Background: Exposure to cigarette may affect human health and increase risk of a wide range of diseases including pulmonary diseases, such as chronic obstructive pulmonary disease (COPD), asthma, lung fibrosis and lung cancer. However, the molecular mechanisms of pathogenesis induced by cigarettes still remain obscure even with extensive studies. With systemic view, we attempted to identify the specific gene modules that might relate to injury caused by cigarette smoke and identify hub genes for potential therapeutic targets or biomarkers from specific gene modules. Materials and Methods: The dataset GSE18344 was downloaded from the Gene Expression Omnibus (GEO) and divided into mouse cigarette smoke exposure and control groups. Subsequently, weighted gene co-expression network analysis (WGCNA) was used to construct a gene co-expression network for each group and detected specific gene modules of cigarette smoke exposure by comparison. Results: A total of ten specific gene modules were identified only in the cigarette smoke exposure group but not in the control group. Seven hub genes were identified as well, including Fip1l1, Anp32a, Acsl4, Evl, Sdc1, Arap3 and Cd52. Conclusions: Specific gene modules may provide better understanding of molecular mechanisms, and hub genes are potential candidates of therapeutic targets that may possible improve development of novel treatment approaches.

Performance Assessment of Sputter-Coating-Colored BIPV Modules Through Field Test (현장 실험을 통한 Sputter Coating 컬러 BIPV 모듈의 발전성능 평가)

  • Lee, Hyo-Mun;Yoon, Jong-Ho;Kim, Hyun-Il;Lee, Gun-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.5
    • /
    • pp.1-12
    • /
    • 2020
  • To assess the performance and characteristics of colored building-integrated photovoltaic (BIPV) modules, a comparative assessment of empirical performance was conducted on colored BIPV modules (gray, blue, and orange) and general BIPV module. These modules were installed on the south-facing slope (30°) for comparative assessment through a field test. Monitoring data were collected every 10 min from December 20, 2019 to January 21, 2020 and used to performance and characteristics analysis. Performance ratio and module efficiency were utilized during performance indexing for comparative assessment. For general BIPV modules, the operational efficiency was analyzed at 16.63%, whereas for colored BIPV modules, 13.70% (gray), 15.12 % (blue), and 14.49% (orange) were analyzed. It was discovered that the efficiency reduction caused by transmission losses owing to the application of colored cover glasses were 17.74% (gray), 9.05% (blue), and 9.86 % (orange), under field testing conditions. These values turned on an additional 7% reduction in efficiency for gray BIPV modules, compared to the degradation resulting from transmission drop (gray: 10.87%, blue: 8.99%, and orange: 9.02%) calculated using the efficiency of each module in standard test conditions (STC). Performance ratio analysis resulted in the following values: 0.92 for general BIPV modules, and 0.85 (gray), 0.91 (blue), and 0.91 (orange) for colored BIPV modules. As demonstrated by the above results, modules with a colored cover glass may differ in their operational performance depending on their color, unlike general modules. Therefore, in addition to the performance evaluation under STC, additional factors of degradation require consideration through field test.

Deeper SSD: Simultaneous Up-sampling and Down-sampling for Drone Detection

  • Sun, Han;Geng, Wen;Shen, Jiaquan;Liu, Ningzhong;Liang, Dong;Zhou, Huiyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4795-4815
    • /
    • 2020
  • Drone detection can be considered as a specific sort of small object detection, which has always been a challenge because of its small size and few features. For improving the detection rate of drones, we design a Deeper SSD network, which uses large-scale input image and deeper convolutional network to obtain more features that benefit small object classification. At the same time, in order to improve object classification performance, we implemented the up-sampling modules to increase the number of features for the low-level feature map. In addition, in order to improve object location performance, we adopted the down-sampling modules so that the context information can be used by the high-level feature map directly. Our proposed Deeper SSD and its variants are successfully applied to the self-designed drone datasets. Our experiments demonstrate the effectiveness of the Deeper SSD and its variants, which are useful to small drone's detection and recognition. These proposed methods can also detect small and large objects simultaneously.

Potential Induced Degradation(PID) of Crystalline Silicon Solar Modules (결정질 실리콘 태양전지 모듈의 Potential Induced Degradation(PID) 현상)

  • Bae, Soohyun;Oh, Wonwook;Kim, Soo Min;Kim, Young Do;Park, Sungeun;Kang, Yoonmook;Lee, Haeseok;Kim, Donghwan
    • Korean Journal of Materials Research
    • /
    • v.24 no.6
    • /
    • pp.326-337
    • /
    • 2014
  • The use of solar energy generation is steadily increasing, and photovoltaic modules are connected in series to generate higher voltage and power. However, solar panels are exposed to high-voltage stress (up to several hundreds of volts) between grounded module frames and the solar cells. Frequent high-voltage stress causes a power-drop in the modules, and this kind of degradation is called potential induced degradation (PID). Due to PID, a significant loss of power and performance has been reported in recent years. Many groups have suggested how to prevent or reduce PID, and have tried to determine the origin and mechanism of PID. Even so, the mechanism of PID is still unclear. This paper is focused on understanding the PID of crystalline-silicon solar cells and modules. A background for PID, as well as overviews of research on factors accelerating PID, mechanisms involving sodium ions, PID test methods, and possible solutions to the problem of PID, are covered in this paper.

Pointwise Projective Modules and Some Related Modules

  • NAOUM-ADIL, GHASAN;JAMIL-ZEANA, ZAKI
    • Kyungpook Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.471-480
    • /
    • 2003
  • Let $\mathcal{R}$ be a commutative ring with 1, and Let M be a (left) R-module. M is said to be pointwise projective if for each epimorphism ${\alpha}:\mathcal{A}{\rightarrow}\mathcal{B}$, where A and $\mathcal{B}$ are any $\mathcal{R}$-modules, and for each homomorphism ${\beta}:\mathcal{M}{\rightarrow}\mathcal{B}$, then for every $m{\in}\mathcal{M}$, there exists a homomorphism ${\varphi}:\mathcal{M}{\rightarrow}\mathcal{A}$, which may depend on m, such that ${\alpha}{\circ}{\varphi}(m)={\beta}(m)$. Our mean concern in this paper is to study the relations between pointwise projectivemodules with cancellation modules and its geeralization.

  • PDF

INDEPENDENTLY GENERATED MODULES

  • Kosan, Muhammet Tamer;Ozdin, Tufan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.867-871
    • /
    • 2009
  • A module M over a ring R is said to satisfy (P) if every generating set of M contains an independent generating set. The following results are proved; (1) Let $\tau$ = ($\mathbb{T}_\tau,\;\mathbb{F}_\tau$) be a hereditary torsion theory such that $\mathbb{T}_\tau$ $\neq$ Mod-R. Then every $\tau$-torsionfree R-module satisfies (P) if and only if S = R/$\tau$(R) is a division ring. (2) Let $\mathcal{K}$ be a hereditary pre-torsion class of modules. Then every module in $\mathcal{K}$ satisfies (P) if and only if either $\mathcal{K}$ = {0} or S = R/$Soc_\mathcal{K}$(R) is a division ring, where $Soc_\mathcal{K}$(R) = $\cap${I 4\leq$ $R_R$ : R/I$\in\mathcal{K}$}.

Optimal Software Release Using Time and Cost Benefits via Fuzzy Multi-Criteria and Fault Tolerance

  • Srivastava, Praveen Ranjan
    • Journal of Information Processing Systems
    • /
    • v.8 no.1
    • /
    • pp.21-54
    • /
    • 2012
  • As we know every software development process is pretty large and consists of different modules. This raises the idea of prioritizing different software modules so that important modules can be tested by preference. In the software testing process, it is not possible to test each and every module regressively, which is due to time and cost constraints. To deal with these constraints, this paper proposes an approach that is based on the fuzzy multi-criteria approach for prioritizing several software modules and calculates optimal time and cost for software testing by using fuzzy logic and the fault tolerance approach.