• Title/Summary/Keyword: science inquiry skills

Search Result 270, Processing Time 0.023 seconds

The Effects of the Science Process Skill and Scientific Attitudes by SIGM (과학과의 SGIM 적용 수업이 과학적 탐구능력 및 과학에 대한 태도에 미치는 효과)

  • Lee, Yong-Seob;Lee, Kun-Eui
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.4 no.1
    • /
    • pp.43-56
    • /
    • 2011
  • The purpose of this study is to examine the effects of small group inquiry skills on improving science process skills and attitudes toward science in elementary school science. The research questions of this study were as follows. First, effects of small group inquiry skills on improving science process skills in elementary school science. Second, effects of small group inquiry skills on improving attitudes toward science in elementary school science. The subjects of this study is two classes from 6th grade elementary classes in Busan. The experiment class practiced small group inquiry skills, while the control class practiced self inquiry. To verify the effect of the experiment, ANOVA was conducted. The main findings of this study are as follows. First, the small group inquiry skills gave a significant influence on increasing the science process skills, including the basic science process skills and the integrated science process skills, of students. Especially, among subordinate factors of science process skills between groups, it was effective to increase abilities of observing, reasoning, interpreting data, formulating hypothesis. It is necessary for teachers to make an effort to teach according to steps of the small group inquiry skills and to support inquiry activities, in order to increasing the science process skills. However, frequency of additional lessons have a little influence on increasing the science process skills. Second, there is meaningful change in the attitudes toward science for those who studied the small group inquiry skills. Also, they affected subordinate factors of the attitudes toward science, like the attitudes toward science inquiry, the happiness about science class. This study shows that the small group inquiry skills give a positive influence on the science process skills and attitudes toward science in elementary school science.

The Development of a Test of Earth Science Inquiry Skills for High School Student (고등학생의 지구과학 탐구능력 측정을 위한 평가도구 개발)

  • Woo, Jong-Ok;Lee, Hang-Ro
    • Journal of The Korean Association For Science Education
    • /
    • v.15 no.1
    • /
    • pp.92-103
    • /
    • 1995
  • Since the late of 1960,s, the improvement of science inquiry skills has been one of the most important goals in secondary science education. To achieve this goal, it is essential to develop a valid and reliable instrument for evaluating science inquiry skills. The purpose of this study is to develop a valid and reliable instrument for evaluating science inquiry skills for high school students. The instrument is developed through R & D procedure, which includes two field trials of the instrument. This study has formed a clear definition of the elements of science inquiry skills (formulating a hypothesis, controlling variables, designing an experiment, numeric calculation, graphing experimental data, inference, determining relationship, determining causalities, predicting experimental results , drawing a conclusion, formulating a generalization or model), and established the goals of assessment and developed the items of assessment. The instrument, Test of Earth Science Inquiry Skills, consists of 33 items which measure 11 science inquiry skills. There are content-free items for each science inquiry skills. This study has selected 11 science inquiry skills which are considered appropriate for being evaluated by paper-and-pencil test with SIEI (Hur,1984). The content validity of items, objectivity of the scoring keys and clarity of the items were checked by six experienced specialists in science education. At the same time, the two field trials has been executed and produced the reliability of the instrument, item difficulty index, and the effectiveness of distracters. The first field trial was performed using a sample of 304 high school students, and the second one using a sample of 872 high school students. Because the content validity is 84 % and the reliability (K-R 20) is 0.84, the developed instrument in this study is considered valid and reliable. The difficulty index is 49.4 %, answer ratio 59.1 %, the discrimination index 0.47 and the effectiveness of distracters evenly distributed, which also suffice the criteria of good instrument. The developed instrument in this study can diagnosis the well-developed science inquiry skills and the ill-developed science inquiry skills of the students, and trace the degree of the improvement of science inquiry skills.

  • PDF

An Analysis on the Relationship between Cognitive Levels and Science Inquiry Skills in High School Students (고등학생의인지수준과 과학탐구 능력과의 관계 분석)

  • Woo, Jong-Ok;Kim, Jong-Eal
    • Journal of The Korean Association For Science Education
    • /
    • v.13 no.2
    • /
    • pp.296-307
    • /
    • 1993
  • The purpose of this study was to identify concretely how to improve inquiry learning. To put the purpose in detail : 1) to define the inquiry skills 2) to select the factors of inquiry skills appropriate to the content of Science I (earth science) textbook 3) to develop items which consist of experimental inquiry and concept inquiry in due proportion, to evalute inquiry skills 4) to analyze the relationship between high school students' cognitive levels and the achievement of science inquiry skills. To achieve these objectives, the investigator sampled 558 students in eleventh grade, living in Seoul, Chung-Ju and Kwang-Ju, and evaluated their cognitive levels and the achievement of science inquiry skills. The results of this study showed that the cognitive levels of students were lower than those identified in Piaget's work and that the achievement of science inquiry skills were low also. It may be thought that one of most important reasons to bring about those results is lacking in adaptation capability of science inquiry items and inquiry learning. So, it can be recommended as a way to heighten cognitive levels to make inquiry learning using the textbook content. In conclusion, the investigator make suggestions as follows : 1) to give inquiry learning which consist of experimental inquiry and concept inquiry in due proportion 2) to develop inquiry items to include content for evaluating inquiry learning, and test items for psycho-motor areas 3) to publish textbooks which motivate students' inquiry activities and develop their creative thinking, considering students' cognitive levels and inquiry skills.

  • PDF

Sub-Component Extraction of Inquiry Skills for Direct Teaching of Inquiry Skills (탐구 기능의 직접적 수업을 위한 탐구 기능 하위 요소 추출)

  • Lee, Eun-Ju;Kang, Soon-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.2
    • /
    • pp.236-264
    • /
    • 2012
  • The purpose of this study is to provide teachers with sub-components of inquiry skills and help them to give direct instructions on the skills to their students. Inquiry skills and strategies are considered by-products of science and inquiry instruction by most of the science teachers. On the other hand, much research shows that many students are not familiar with the way that they can use inquiry skills therefore direct instruction on the inquiry skills is needed. The lack of guidance on the sub-components for the inquiry skills, however, results in science teachers' ignorance of the inquiry skills. As shown in the previous studies which suggest that without teachers' guidance, students cannot acquire the intended skills, and it is necessary to inform science teachers of the necessity for direct instruction on the inquiry skills and strategy as well as give them the sub-components of the inquiry skills. On the basis of the results from the previous research on the inquiry skills, this study presents the sub-components of basic inquiry skills (observation, classification, measure, prediction, and reasoning) and integrated inquiry skills (problem recognition, hypothesis formulation, control of variables, data transformation, data interpretation, drawing conclusion, and generalization).

Students Opportunities to Develop Scientific Argumentation in the Context of Scientific Inquiry: A Review of Literature

  • Flick, Larry;Park, Young-Shin
    • Journal of the Korean earth science society
    • /
    • v.25 no.3
    • /
    • pp.194-204
    • /
    • 2004
  • The purpose of this literature review is to investigate what kinds of research have been done about scientific inquiry in terms of scientific argumentation in the classroom context from the upper elementary to the high school levels. First, science educators argued that there had not been differentiation between authentic scientific inquiry by scientists and school scientific inquiry by students in the classroom. This uncertainty of goals or definition of scientific inquiry has led to the problem or limitation of implementing scientific inquiry in the classroom. It was also pointed out that students' learning science as inquiry has been done without opportunities of argumentation to understand how scientific knowledge is constructed. Second, what is scientific argumentation, then? Researchers stated that scientific inquiry in the classroom cannot be guaranteed only through hands-on experimentation. Students can understand how scientific knowledge is constructed through their reasoning skills using opportunities of argumentation based on their procedural skills using opportunities of experimentation. Third, many researchers emphasized the social practices of small or whole group work for enhancing students' scientific reasoning skills through argumentations. Different role of leadership in groups and existence of teachers' roles are found to have potential in enhancing students' scientific reasoning skills to understand science as inquiry. Fourth, what is scientific reasoning? Scientific reasoning is defined as an ability to differentiate evidence or data from theory and coordinate them to construct their scientific knowledge based on their collection of data (Kuhn, 1989, 1992; Dunbar & Klahr, 1988, 1989; Reif & Larkin, 1991). Those researchers found that students skills in scientific reasoning are different from scientists. Fifth, for the purpose of enhancing students' scientific reasoning skills to understand how scientific knowledge is constructed, other researchers suggested that teachers' roles in scaffolding could help students develop those skills. Based on this literature review, it is important to find what kinds of generalizable teaching strategies teachers use for students scientific reasoning skills through scientific argumentation and investigate teachers' knowledge of scientific argumentation in the context of scientific inquiry. The relationship between teachers' knowledge and their teaching strategies and between teachers teaching strategies and students scientific reasoning skills can be found out if there is any.

A Study on the Effect of Science Achievement Faculties Improvements in High School Inquiry Chemistry Experiments (탐구 화학 실험을 통한 고등학교 학생들의 과학 성취도 향상에 관한 연구)

  • Choonpyo Hong;Yongyeon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.5
    • /
    • pp.487-494
    • /
    • 2003
  • In this study, the effects of science achievement faculties improvements upon students' logical thinking, science inquiry skills, experiment attitudes, manipulated skills and inquiry process skills were investigated in high school inquiry chemistry experiments. For this purpose, the participants were 150 students taking the course of high school chemistry class in Anyang-city. Logical thinking and science inquiry skills' data were collected from written tests, inquiry process skills' data were collected from reports and experiment attitudes and manipulated skills' data were collected from classroom observations. As the results of this study, students' inquiry process skills, experiment attitudes and manipulative skills were very low. But other parts except inquiry process skills were significantly increased. And the science achievement of students were improved when continuously inquiry chemistry experiment were applied to students.

The Effect of Free Inquiry Activities on the Science Process Skills and Scientific Attitudes of Elementary School Students (자유탐구활동이 초등학생의 과학탐구능력과 과학적 태도에 미치는 영향)

  • 박종호;김재영;배진호
    • Journal of Korean Elementary Science Education
    • /
    • v.20 no.2
    • /
    • pp.271-280
    • /
    • 2001
  • The purpose of this study is to investigate how free inquiry activities affects the scientific process skills and scientific attitudes of 5th and 6th of elementary school students. For this study, 265 elementary students from 5th and 6th grade in Seoul were selected. In comparison group 130 students were implemented and to the experimental group 135 students who did not the free inquiry activities were implemented. The result of this study is as follows: First, curiosity was the most affective factor that motivate free inquiry activities and made them select their topics. Most of the students invested for the inquiry activity in less than 3 weeks. They had some help in every stages. Students became interested in free inquiry activities because they learned new facts and enjoyed doing experiments and they wanted to continue for the same reasons. Second, free inquiry activities had little effect on the basic science process skills of the experimental group, compared to the control group at the significant difference of p=0.05. Third, free inquiry activities had considerable effect on the integrative inquiry process skills of the experimental group, compared to the control group at the significant difference of p=0.05. Fourth, the result of the post-test of the experimental group showed that free inquiry activities had no effect on scientific attitudes at the significant difference of p=0.05. In conclusion, free inquiry activities will be much more effective in developing integrative inquiry process skills than in developing basic scientific process skills and scientific attitudes.

  • PDF

THE SPECIFICATION OF EVALUATIVE OBJECTIVES AND SELECTION OF BEHAVIORAL ELEMENTS TO MEASURE. SCIENCE INQUIRY SKILLS RELATING TO EARTH SCIENCE AMONG QUANTITATIVE(MATHEMATICAL) INQUIRY DOMAIN OF UNIVERSITY COMPETENCY TEST (대학 수학능력 시혐의 수리.탐구 영역중 지구과학 교과에 관련된 탐구능력 측정을 위한 행동요소의 추출과 평가 목표의 상세화 연구 I)

  • Woo, Jong-Ok;Lee, Kyung-Hoon;Lee, Hang-Ro
    • Journal of The Korean Association For Science Education
    • /
    • v.11 no.1
    • /
    • pp.83-96
    • /
    • 1991
  • The purpose of this study is to construct the evaluative objectives of science inquiry skills specificationaly. Specification of evaluative objectives will be able to serve as evaluative criterion for development of a test of the integrated science process skills. The results in this study are as follows ; (l) The selections of science inquiry skills from the previous developed taxonomies are observation, measurement, formulating hypothesis, designing an experiment and controlling variables, inference, predicting(including intrapolation and extrapolation), organizing data and interpreting, defining operationally, formulating a generalization or model, drawing a conclusion. (2) The definitions of the selected science inquiry skills are made operationally. (3) Evaluative objectives relating to the selected science inquiry skills are specified with the previous developed items. Based on the above results, total 9 science inquiry skills are selected and 72 evaluative objectives are specified.

  • PDF

Analysis of Inquiry Tasks in Earth Unit of the 10th Grade Science Textbooks (10학년 과학 교과서 지구 단원의 탐구 과제 분석)

  • Kim, Jeong-Yul;Kim, Myung-Suk;Park, Ye-Ri
    • Journal of the Korean earth science society
    • /
    • v.26 no.6
    • /
    • pp.501-510
    • /
    • 2005
  • An analysis was done on the “inquiry sections” of Earth Science chapters of 10th grade science textbooks. The Inquiry sections were classified into different types and the frequencies of basic process skills, integrated process skills, and inquiry activities were measured in section to find out whether they sufficiently satisfy the requirements based on the 7th National Curriculum. The number of selected science textbooks that have been used in high school for this study were eleven. The number of inquiry tasks were on an average of 24.0. The types of inquiry sections and the elements of basic and integrated process skills were different in every textbooks. The number of inquiry activities were also different and analyzed more than those presented. They were not integrated activities but presented as scientific process skills. The basic process skills and integrated process skills presented in textbooks were $16\%\;and\;77.2\%$, respectively. However, the distribution of two kinds of process skills were analyzed to be $45.6\%\;and\;55.4\%$, respectively. In the process skills, the frequencies of inferring $(49.5\%)$ and data interpretation (68.7%) were the highest; however, the other process skills including recognizing problem, formulating hypothesis and generalization were not even presented in any of the text books. Due to the lack of the definitions of Science process skills and inquiry activities in the 7th National Curriculum, each text book defined these terms differently. It suggests that the meaning of inquiry, science process skills, and inquiry activities should be operationally defined in the national curriculum and the criteria for construction of inquiry activities are required.

Analyzing Science Teachers' Understandings about Scientific Argumentation in terms of Scientific Inquiry

  • Park, Young-Shin
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.3
    • /
    • pp.211-226
    • /
    • 2008
  • The purpose of this study was to investigate science teachers' understandings about scientific argumentation in the classroom. Seven structured interview protocols were developed, asking the definition of scientific inquiry, the differentiation between scientific inquiry and hands-on activity, the opportunity of student argumentation, explicit teaching strategies for scientific argumentation, the critical example of argumentation, the criteria of successful argumentation, and the barrier of developing argumentation. The results indicate that there are differences and similarities in understandings about scientific argumentation between two groups of middle school teachers and upper elementary. Basically, teachers at middle school define scientific inquiry as the opportunity of practicing reasoning skills through argumentation, while teachers at upper elementary define it as the more opportunities of practicing procedural skills through experiments rather than of developing argumentation. Teachers in both groups have implemented a teaching strategy called "Claim-Evidence Approach," for the purpose of providing students with more opportunities to develop arguments. Students' misconception, limited scientific knowledge and perception about inquiry as a cycle without the opportunity of using reasoning skills were considered as barriers for implementing authentic scientific inquiry in the classroom.