• 제목/요약/키워드: science inquiry

검색결과 1,334건 처리시간 0.023초

자유탐구 방법을 활용한 환경수업이 과학탐구능력 및 환경친화적 태도에 미치는 효과 (The Effects on Science Process Skills and Environment-Friendly Attitudes by Environmental class Using Free Inquiry Method)

  • 이용섭
    • 한국환경과학회지
    • /
    • 제21권3호
    • /
    • pp.351-362
    • /
    • 2012
  • The purpose of this study is to make a Result analysis on the free inquiry Method of elementary school student. also, this study investigates how free inquiry activities effect the science Process skills and environment-friendly attitudes of elementary school student For this study 150, sixth year, elementary school students from Busan city were selected. The inquiry examined the effectiveness of each of the following free inquiry methods: the PBL inquiry, the Project inquiry, the IIM inquiry, the small group inquiry and the science notebooks inquiry. The students were divided into groups in which they incorporated the respective methods into their practice. Test showed the following results: The environmental class which applies a free inquiry method(PBL inquiry, Project inquiry, IIM inquiry, small group inquiry and science notebooks) was effective in science process skills improvement. Second, The environmental class which applies a free inquiry method((PBL inquiry, Project inquiry, IIM inquiry, small group inquiry and science notebooks) was effective in environment-friendly attitude improvement.

과학 탐구 활동의 유형과 과학 탐구의 특징에 대한 초등 교사의 인식 (Elementary Teachers' Perception of the Science Inquiry Activities and Essential Features of Science Inquiry)

  • 성혜진;임희준
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제38권2호
    • /
    • pp.163-172
    • /
    • 2019
  • This study explored elementary teachers' perceptions on the essential features of science inquiry, the appropriateness of inquiry activities to science inquiry, and the essential features of inquiry by inquiry activities. 85 elementary teachers' perceptions were investigated using Likert scale survey, and 7 teachers were interviewed. The results are as follows. First, the features that elementary teachers perceived the most essential were 'Engaging students in evaluating their explanations in light of alternative explanations' and 'Engaging students in communicating and justifying their explanations'. Second, The inquiry activities that teachers thought the most appropriate to science inquiry were 'experiment' and 'project'. On the other hand, the perceptions on 'discussion' and 'field trip' were relatively low. Third, the inquiry activity that showed the highest mean score of five essential features of inquiry was 'experiment' while the mean score of 'field trip' was the lowest. Educational implications about the science inquiry were discussed.

과학 탐구 활동의 유형과 과학 탐구의 특징에 대한 초등학생의 인식 (Elementary Students' Perception of the Science Inquiry Activities and Essential Features of Science Inquiry)

  • 성혜진;임희준
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제37권4호
    • /
    • pp.391-401
    • /
    • 2018
  • This study investigated elementary students' perception of the suitability of inquiry activities related to the science inquiry, essential features of the inquiry and essential features of the inquiry by science inquiry activities. First, 5-6th grade elementary students' perception of the suitability of inquiry activities to the science inquiry was positive in this study and especially the score of experiment and field trip was high. The lowest score was on the discussion and elementary students thought that discussion might be wrong, because they just talked when they participated in the discussion. Second, perception of the essential features of science inquiry was positive. Especially, engaging students in evaluating their explanations in the light of alternative explanations was the highest. Students thought that explanation is important, but it is too hard to perform the science inquiry with only the explanation. Third, the score of research and experiment was high in essential features of science inquiry by science inquiry activities. The score of the field trip was low, so a more meaningful field trip should be carried out in the school.

고등학생의인지수준과 과학탐구 능력과의 관계 분석 (An Analysis on the Relationship between Cognitive Levels and Science Inquiry Skills in High School Students)

  • 우종옥;김종일
    • 한국과학교육학회지
    • /
    • 제13권2호
    • /
    • pp.296-307
    • /
    • 1993
  • The purpose of this study was to identify concretely how to improve inquiry learning. To put the purpose in detail : 1) to define the inquiry skills 2) to select the factors of inquiry skills appropriate to the content of Science I (earth science) textbook 3) to develop items which consist of experimental inquiry and concept inquiry in due proportion, to evalute inquiry skills 4) to analyze the relationship between high school students' cognitive levels and the achievement of science inquiry skills. To achieve these objectives, the investigator sampled 558 students in eleventh grade, living in Seoul, Chung-Ju and Kwang-Ju, and evaluated their cognitive levels and the achievement of science inquiry skills. The results of this study showed that the cognitive levels of students were lower than those identified in Piaget's work and that the achievement of science inquiry skills were low also. It may be thought that one of most important reasons to bring about those results is lacking in adaptation capability of science inquiry items and inquiry learning. So, it can be recommended as a way to heighten cognitive levels to make inquiry learning using the textbook content. In conclusion, the investigator make suggestions as follows : 1) to give inquiry learning which consist of experimental inquiry and concept inquiry in due proportion 2) to develop inquiry items to include content for evaluating inquiry learning, and test items for psycho-motor areas 3) to publish textbooks which motivate students' inquiry activities and develop their creative thinking, considering students' cognitive levels and inquiry skills.

  • PDF

초등학교 과학교과서에 제시된 탐구활동의 교수전략, 유형, 개념과의 연관성 분석 - 지구과학 영역을 중심으로 - (Analysis of Teaching Strategies, Types of Inquiry Activities and the Relationship between Inquiry Activities and Concepts Presented in Elementary School Science Textbooks - Focusing on Earth Science -)

  • 임성만
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제39권3호
    • /
    • pp.449-463
    • /
    • 2020
  • This study was to analysis teaching strategies, types of inquiry activities and the relationship between science concepts and inquiry activities presented in science textbooks. As a result of the study, first, the inquiry-based teaching strategies presented in science textbooks were experiment, simulation, demonstration, and field study. Second, there were 53 inquiry activities presented in 8 units related to the earth science area of science textbooks, and the types of inquiry activities were experimental observation (EO) 18, mock activity (SA) 20, investigation discussion and presentation (IP). It was analyzed as 12, data interpretation (ID) 2, and express (EX) 1 piece. Third, the relationship between inquiry activities and science concepts presented in science textbooks was analyzed. As a result of the analysis, out of a total of 42 inquiry activities, 21 inquiry activities corresponded to EA (explicit activities), in which the result of inquiry activities was directly and explicitly linked to science concepts. And IA (implicit activities), which is an implicit inquiry activity in which science concepts must be inferred using the results of inquiry activities, were analyzed as 21. In particular, IA (implicit activities), which is an implicit inquiry activity, can be said to be the result of reflecting the characteristics of earth science areas where many simulated activities (SA) are used. This is considered to be a matter to be considered in the process of developing various elementary science textbooks in the future.

과학 탐구 평가표의 개발 (The Development of An Instrument for Evaluating Inquiry Activity in Science Curricula)

  • 허명
    • 한국과학교육학회지
    • /
    • 제4권2호
    • /
    • pp.57-63
    • /
    • 1984
  • An inquiry approach in teaching science has been advocated by many science educators for the past few decades, and most elementary and secondary science curricula have incorporated it in varying degrees. It has been proven in recent studies, however, that there exists considerable discrepancy between the expectation of outcomes of the inquiry approach and the actuality. This in part implies that there is a somewhat urgent need for the systematic evaluation of the approach in teaching science. The purpose of this study is to develop a comprehensive instrument for evaluating inquiry teaching approaches embedded in science curricular materials. To develop a more valid and reliable instrument a set of empirical data was used in the developmental procedure, and most of the previous studies regarding inquiry teaching method and inquiry evaluation were consulted. The inquiry evaluation method developed in this study, called the Scientific Inquiry Evaluation Inventory (SIEI), is composed of three parts: (1) analyzing and coding each science process task of inquiry activity; (2) evaluating each inquiry activity as a whole; and (3) evaluating each science laboratory curriculum as a whole. The first part of the instrument consists of twenty science process categories and thirty subcategories grouped into four sections: (1) gathering and organizing data; (2) interpreting and analyzing data; (3) synthesizing results and evaluation; and (4) hypothesizing and designing an experiment. The science process categories are arranged according to the level of difficulty, psychological level of thinking, degree of creativity demand, and the model of the process of scientific inquiry, which is also developed in the study. The second part of the instrument contains four evaluation scales of inquiry activity: (1) competition/cooperation scale; (2) discussion scale; (3) openness scale; and (4) inquiry scope scale. And the last part consists of three methods for evaluating a science laboratory curriculum as a whole: (1) inquiry pyramid; (2) inquiry index; and (3) difficulty index. The instrument is designed to be used by teachers, science curriculum developers and science education evaluators for the purpose of diagnosing the nature and appropriateness of scientific inquiry introduced in secondary science curricular materials, especailly in laboratory work and field work.

  • PDF

초등학교 교사들의 과학적 탐구 및 지도방법에 관한 신념 연구 (Elementary Teacher's Beliefs of Scientific Inquiry and Scientific Inquiry Teaching Method)

  • 이상균
    • 대한지구과학교육학회지
    • /
    • 제5권2호
    • /
    • pp.213-223
    • /
    • 2012
  • This study explored practicing elementary school teacher's beliefs of scientific inquiry and scientific inquiry teaching methods. Defining teacher's beliefs as a broad construct, we tried to examine the teachers' understandings about the scientific inquiry and scientific inquiry teaching method. This study drew on interview data from 10 elementary teachers in busan and changwon area of korea. Conclusions of this study include; First, we found that elementary teacher's beliefs of inquiry were represented variously. And they considered that inquiry is the important goal of science education. They though that the goal of science education is development of Scientific inquiry skills, Scientific thinking skills, development of Creativity and problem solving ability, increasing interest about science, understanding of the basic concepts of science and apply of real-life. second, most of the teachers though that Scientific inquiry is scientists activities, they defined 'the process of creation of new knowledge', 'the process of deriving theory', 'solving process of intellectual curiosity', 'Problem-solving process'. third, they considered that teaching method of scientific inquiry is open inquiry activities. however, they thought that there are many difficulties to actually apply. Understanding teachers' beliefs has implications for both the enactment of inquiry teaching in the classroom as well as the uptake of new teaching behaviors during professional development, with enhanced outcomes for engaging students in Science.

Teaching Models for Scientific Inquiry Activity through the Nature of Science (NOS)

  • Park, Jong-Won
    • 한국과학교육학회지
    • /
    • 제28권7호
    • /
    • pp.759-767
    • /
    • 2008
  • This article arose from the previous studies, which suggested a synthetic list for the nature of science (NOS), discussed the relationship between the NOS and scientific inquiry and the development of the NOS in the context of scientific inquiry. In this article, for teaching scientific inquiry through the NOS, I proposed three teaching models - reflection, interaction, and the direct model -. Within these teaching models, understanding the NOS is viewed as a prerequisite condition for the improved performance of scientific inquiry. In the reflection model, the NOS is embedded and reflected in scientific inquiry without explicit introduction or direct explanation of the NOS. In the interaction model, concrete interaction between scientific inquiry and the NOS is encouraged during the process of scientific inquiry. In the direct model, subsequent to directly comprehending the NOS at the first stage of activity, students conduct scientific inquiry based on their understanding of the NOS. The intention of this present article is to facilitate the use of these models to develop teaching materials for more authentic scientific inquiry.

Discussions for linking the Nature of Science (NOS) with Scientific Inquiry

  • Park, Jong-Won
    • 한국과학교육학회지
    • /
    • 제28권7호
    • /
    • pp.749-758
    • /
    • 2008
  • Even though the importance of the nature of science (NOS) and scientific inquiry in science learning have been emphasized by many science educators and science curriculums, the link between the NOS and scientific inquiry has not been discussed sufficiently. In this article, I discussed that various aspects of NOS are already embedded in defining and characterizing the authentic scientific inquiry and that we need to have special concern about how the NOS should be treated and interpreted when introducing it into scientific inquiry. And I summarized two approaches to teach the NOS and scientific inquiry; teaching the NOS through scientific inquiry and teaching scientific inquiry through the NOS. Finally, some next studies based on this article are introduced.

제7차의 탐구요소들에 의한 중학교 과학 3교과서의 탐구 영역 분석 - 화학 분야에 대하여 - (The Analysis of Inquiry Area in Middle School Science Textbooks by the Inquiry Elements Based on the 7th Science Curriculum - On the Chemistry Field of Science in Grade 9 -)

  • 구인선;이종원;강대호
    • 대한화학회지
    • /
    • 제48권4호
    • /
    • pp.414-426
    • /
    • 2004
  • 이 연구는 9학년 과학교과서의 화학분야 탐구영역(탐구과정, 탐구활동)을 제7차 과학교육과정에서 제시한 탐구요소들에 근거하여, 교과서별, 단원별로 분석하였다. 연구의 목적은 제7차 과학교육과정에 제시된 탐구요소들이 중학교 최고학년인 9학년 과학교과서의 탐구영역에 반영된 정도를 알아보고, 다양한 탐구학습을 위한 교육적 시사점을 찾고자 하는데 있다. 9학년 과학교과서의 탐구영역에 대한 전체적인 탐구요소들의 분석에서, 기초탐구요소들은 분류를 제외하고는 제7차 중학교 과학교과서들에 비교적 잘 반영되어 있으나, 통합탐구요소들은 자료해석이 거의 절반을 차지하였다. 이와 같은 현상은 탐구과정과 탐구활동의 분석에서 유사하게 나타났다. 특히, 제7차 과학교육과정의 탐구활동유형으로 신설된 과제연구와 견학은 거의 반영되어 있지 않았다. 제7차 과학교육과정은 과학과의 교수방법 해설에서, 9학년을 탐구의 수준에서 고학년 과정으로 구분하고 있으나, 통합탐구요소들과 탐구활동의 유형들은 다양하게 반영되어 있지 못하다. 그러므로 9학년의 탐구학습은 본 연구의 자료를 바탕으로 탐구영역을 재구성하여 다양하게 운영하는 것이 바람직하다. 앞으로 통합탐구요소들과 탐구활동유형들이 9학년의 탐구영역에 활용되는 정도와 비율에 관한 연구가 계속되어야겠다.