• 제목/요약/키워드: science, artificial intelligence

검색결과 1,482건 처리시간 0.037초

단어 임베딩 모델 기반 캡티브 포털 메뉴 추천 시스템 (Captive Portal Recommendation System Based on Word Embedding Model)

  • 여동훈;황병일;김동주
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.11-12
    • /
    • 2023
  • 본 논문에서는 상점 내 캡티브 포털을 활용하여 수집된 주문 정보 데이터를 바탕으로 사용자가 선호하는 메뉴를 추천하는 시스템을 제안한다. 이 시스템은 식품 관련 공공 데이터셋으로 학습된 단어 임베딩 모델(Word Embedding Model)로 메뉴명을 벡터화하여 그와 유사한 벡터를 가지는 메뉴를 추천한다. 이 기법은 캡티브 포털에서 수집되는 데이터 특성상 사용자의 개인정보가 비식별화 되고 선택 항목에 대한 정보도 제한되므로 기존의 단어 임베딩 모델을 추천 시스템에 적용하는 경우에 비해 유리하다. 본 논문에서는 실제 동일한 시스템을 사용하는 상점들의 구매 기록 데이터를 활용한 검증 데이터를 확보하여 제안된 추천 시스템이 Precision@k(k=3) 구매 예측에 유의미함을 보인다.

  • PDF

다국어 정보 검색을 위한 적대적 언어 적응을 활용한 ColBERT (ColBERT with Adversarial Language Adaptation for Multilingual Information Retrieval)

  • 김종휘;김윤수;이근배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.239-244
    • /
    • 2023
  • 신경망 기반의 다국어 및 교차 언어 정보 검색 모델은 타겟 언어로 된 학습 데이터가 필요하지만, 이는 고자원 언어에 치중되어있다. 본 논문에서는 이를 해결하기 위해 영어 학습 데이터와 한국어-영어 병렬 말뭉치만을 이용한 효과적인 다국어 정보 검색 모델 학습 방법을 제안한다. 언어 예측 태스크와 경사 반전 계층을 활용하여 인코더가 언어에 구애 받지 않는 벡터 표현을 생성하도록 학습 방법을 고안하였고, 이를 한국어가 포함된 다국어 정보 검색 벤치마크에 대해 실험하였다. 본 실험 결과 제안 방법이 다국어 사전학습 모델과 영어 데이터만을 이용한 베이스라인보다 높은 성능을 보임을 실험적으로 확인하였다. 또한 교차 언어 정보 검색 실험을 통해 현재 검색 모델이 언어 편향성을 가지고 있으며, 성능에 직접적인 영향을 미치는 것을 보였다.

  • PDF

네트워크 분석과 동적 토픽모델링을 활용한 국내 인공지능 분야 연구동향 분석 (Analyzing Research Trends of Domestic Artificial Intelligence Research Using Network Analysis and Dynamic Topic Modelling)

  • 정우진;오찬희;주영준
    • 한국문헌정보학회지
    • /
    • 제55권4호
    • /
    • pp.141-157
    • /
    • 2021
  • 본 연구는 국내 인공지능 분야 연구동향을 파악하기 위해 국내 학술지에 발표된 인공지능 분야 논문들을 대상으로 네트워크 분석 및 동적 토픽 모델링 분석을 진행하였다. 2020년까지 KCI(한국학술지인용색인)에 등록된 논문 중 '인공지능'과 'artificial intelligence' 두 개의 키워드 중 하나 또는 하나 이상이 논문 제목 또는 색인 키워드에 포함한 2,552개 논문들의 메타데이터 및 초록을 수집하였다. 키워드, 소속기관, 주제 분야, 초록의 추출 및 전처리 작업을 진행하였고 키워드를 활용한 키워드 동시 출현 네트워크 구축 및 분석으로 국내 인공지능 분야의 주요 키워드를 확인하였으며, 소속기관 정보를 활용한 기관 협력 네트워크를 통해 국내외 산학기관들의 협력 정 도 및 특징을 파악하였다. 또한 연구 대상 논문들 중 한글로 작성된 1845개의 초록 들을 대상으로 동적 토픽 모델링을 진행하였으며, 주제어들을 토대로 13개의 주제를 레이블링하였다. 레이블링 된 13개의 주제를 통해 국내 인공지능 연구 분야의 시기별 주제 동향을 파악하였다. 본 연구는 기존의 선행연구들에서 시도하지 않은 저자 소속기관 등을 활용한 기관 협력 네트워크 및 초록을 활용한 동적 토픽 모델링을 통해 국내 인공지능 분야 연구동향 파악의 시야를 확장하는 것으로 학술적 의의를 지닌다. 또한, 본 연구의 결과가 인공지능 시대에 부합하는 국가 정책 수립 기여라는 실질적 함의를 시사한다.

인공지능 반도체 및 패키징 기술 동향 (Artificial Intelligence Semiconductor and Packaging Technology Trend)

  • 김희주;정재필
    • 마이크로전자및패키징학회지
    • /
    • 제30권3호
    • /
    • pp.11-19
    • /
    • 2023
  • 최근 Chat GPT와 같은 인공지능 (Artificial Intelligence, AI) 기술의 급격한 발전에 따라 AI 반도체의 중요성이 강조되고 있다. AI 기술은 빅데이터 처리, 딥 러닝, 알고리즘 등의 요구사항으로 인해 대용량 데이터를 빠르게 처리할 수 있는 능력을 필요로 한다. 그러나 AI 반도체는 대규모 데이터를 처리하는 과정에서 과도한 전력 소비와 데이터 병목현상 문제가 발생한다. 반도체 전공정의 초미세공정이 물리적 한계에 도달함에 따라, AI 반도체의 연산을 위한 최신 패키징 기술이 요구되는 추세이다. 본 고에서는 AI 반도체에 적용가능한 인터포저, TSV, 범핑, Chiplet, 하이브리드 본딩 패키징 기술에 대해서 기술하였다. 이러한 기술들은 AI 반도체의 전력 효율과 연산 속도를 향상시키는데 기여할 것으로 기대된다.

Effective E-Learning Practices by Machine Learning and Artificial Intelligence

  • Arshi Naim;Sahar Mohammed Alshawaf
    • International Journal of Computer Science & Network Security
    • /
    • 제24권1호
    • /
    • pp.209-214
    • /
    • 2024
  • This is an extended research paper focusing on the applications of Machine Learing and Artificial Intelligence in virtual learning environment. The world is moving at a fast pace having the application of Machine Learning (ML) and Artificial Intelligence (AI) in all the major disciplines and the educational sector is also not untouched by its impact especially in an online learning environment. This paper attempts to elaborate on the benefits of ML and AI in E-Learning (EL) in general and explain how King Khalid University (KKU) EL Deanship is making the best of ML and AI in its practices. Also, researchers have focused on the future of ML and AI in any academic program. This research is descriptive in nature; results are based on qualitative analysis done through tools and techniques of EL applied in KKU as an example but the same modus operandi can be implemented by any institution in its EL platform. KKU is using Learning Management Services (LMS) for providing online learning practices and Blackboard (BB) for sharing online learning resources, therefore these tools are considered by the researchers for explaining the results of ML and AI.

AI 의료영상 분석의 개요 및 연구 현황에 대한 고찰 (Artificial Intelligence Based Medical Imaging: An Overview)

  • 홍준용;박상현;정영진
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권3호
    • /
    • pp.195-208
    • /
    • 2020
  • Artificial intelligence(AI) is a field of computer science that is defined as allowing computers to imitate human intellectual behavior, even though AI's performance is to imitate humans. It is grafted across software-based fields with the advantages of high accuracy and speed of processing that surpasses humans. Indeed, the AI based technology has become a key technology in the medical field that will lead the development of medical image analysis. Therefore, this article introduces and discusses the concept of deep learning-based medical imaging analysis using the principle of algorithms for convolutional neural network(CNN) and back propagation. The research cases application of the AI based medical imaging analysis is used to classify the various disease(such as chest disease, coronary artery disease, and cerebrovascular disease), and the performance estimation comparing between AI based medical imaging classifier and human experts.

Critical Factors Affecting the Adoption of Artificial Intelligence: An Empirical Study in Vietnam

  • NGUYEN, Thanh Luan;NGUYEN, Van Phuoc;DANG, Thi Viet Duc
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제9권5호
    • /
    • pp.225-237
    • /
    • 2022
  • The term "artificial intelligence" is considered a component of sophisticated technological developments, and several intelligent tools have been developed to assist organizations and entrepreneurs in making business decisions. Artificial intelligence (AI) is defined as the concept of transforming inanimate objects into intelligent beings that can reason in the same way that humans do. Computer systems can imitate a variety of human intelligence activities, including learning, reasoning, problem-solving, speech recognition, and planning. This study's objective is to provide responses to the questions: Which factors should be taken into account while deciding whether or not to use AI applications? What role do these elements have in AI application adoption? However, this study proposes a framework to explore the significance and relation of success factors to AI adoption based on the technology-organization-environment model. Ten critical factors related to AI adoption are identified. The framework is empirically tested with data collected by mail surveying organizations in Vietnam. Structural Equation Modeling is applied to analyze the data. The results indicate that Technical compatibility, Relative advantage, Technical complexity, Technical capability, Managerial capability, Organizational readiness, Government involvement, Market uncertainty, and Vendor partnership are significantly related to AI applications adoption.

자동 이미지 태깅에 관한 연구 (A Research on Automatic Image Tagging)

  • 전우경;이일병
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(D)
    • /
    • pp.85-87
    • /
    • 2012
  • 최근 모바일 기기는 물론 디지털 카메라, SNS의 발전으로 인하여 매일 방대한 양의 디지털 이미지가 생성된다. 따라서 효과적이고 신뢰도 있는 인덱싱 기법과 탐색 기법이 요구되고 있다. 이미지 태깅은 효과적이고 신뢰도 있는 이미지 탐색에 큰 연관관계가 있다. 본 연구에서는 여러가지 이미지 태깅 기법들을 서베이하고 자동 및 반 자동 이미지 태깅 기법들에 대하여 알아본다.

성공적인 e-Business를 위한 인공지능 기법 기반 웹 마이닝 (Web Mining for successful e-Business based on Artificial Intelligence Techniques)

  • 이장희;유성진;박상찬
    • 지능정보연구
    • /
    • 제8권2호
    • /
    • pp.159-175
    • /
    • 2002
  • 웹 마이닝은 e-Business 환경하에서 존재하는 대량의 웹 데이터에 데이터 마이닝 기법을 적용하여 유용하고 이해 가능한 정보를 추출해내는 과정을 의미하는데, 성공적인 e-Business전개를 위한 핵심적인 기술이다. 본 논문은 인공지능 기법에 기반한 웹마이닝 기술을 활용하여 e-Business상의 온라인 고객의 특성을 분석할 수 있는 data visualization system과 구매 판매 예측시스템의 효과적인 구조와 핵심적인 분석절차를 제안하였다.

  • PDF

A Study on the Improvement of the Intelligent Robots Act

  • Park, Jong-Ryeol;Noe, Sang-Ouk
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권1호
    • /
    • pp.217-224
    • /
    • 2019
  • The intelligent robot industry is a complex which encompasses all fields of science and technology, and its marketability and industrial impact are remarkable. Major countries in the world have been strengthening their policies to foster the intelligent robot industry, but discussions on liability issues and legal actions that are accompanied by the related big or small accidents are still insufficient. In this study, therefore, the patent law by artificial intelligence robots and the legislation for relevant legal actions at the criminal law level are presented. Patent law legislation by artificial intelligence robots should comply with the followings. First, the electronic human being other than humans ought to be given legal personality, which is the subject of patent infringement. Even if artificial intelligence has legal personality, legal responsibility will be varied depending on the judgment of whether the accident has occurred due to the malfunction of the artificial intelligence itself or due to the human intervention with malicious intention. Second, artificial intelligence as a subject of actors and responsibility should be distinguished strictly; in other words, the injunction is the responsibility of the intelligent robot itself, but the financial repayment is the responsibility of the owner. In the criminal law legislation, regulations for legal punishment of intelligent robot manufacturing companies and manufacturers should be prepared promptly in case of legal violation, by amending the scope of application of Article 47 (Penal Provisions) of the Intelligent Robots Development and Distribution Promotion Act. In this way, joint penal provisions, which can clearly distinguish the responsibilities of the related parties, should be established to contribute to the development of the fourth industrial revolution.