• Title/Summary/Keyword: school zone

Search Result 1,913, Processing Time 0.029 seconds

The Characteristic Modes and Structures of Bluff-Body Stabilized Flames in Supersonic Coflow Air

  • Kim, Ji-Ho;Yoon, Young-Bin;Park, Chul-Woung;Hahn, Jae-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.386-397
    • /
    • 2012
  • The stability and structure of bluff-body stabilized hydrogen flames were investigated numerically and experimentally. The velocity of coflowing air was varied from subsonic velocity to a supersonic velocity of Mach 1.8. OH PLIF images and Schlieren images were used for analysis. Flame regimes were used to classify the characteristic flame modes according to the variation of the fuel-air velocity ratio, into jet-like flame, central-jet-dominated flame, and recirculation zone flame. Stability curves were drawn to find the blowout regimes and to show the improvement in flame stability with increasing lip thickness of the fuel tube, which acts as a bluff-body. These curves collapse to a single line when the blowout curves are normalized by the size of the bluff-body. The variation of flame length with the increase in air flow rate was also investigated. In the subsonic coflow condition, the flame length decreased significantly, but in the supersonic coflow condition, the flame length increased slowly and finally reached a near-constant value. This phenomenon is attributed to the air-entrainment of subsonic flow and the compressibility effect of supersonic flow. The closed-tip recirculation zone flames in supersonic coflow had a reacting core in the partially premixed zone, where the fuel jet lost its momentum due to the high-pressure zone and followed the recirculation zone; this behavior resulted in the long characteristic time for the fuel-air mixing.

Growth and Yield of Hydroponic Rose "Little Marble" as Affected by Root Zone Temperature and Heating Method in Winter Season (동계 근권 온도 및 가온방법이 양액재배 장미 "리틀마블"의 생육과 수량에 미치는 영향)

  • Lee, Mi-Young;Hwang, Seung-Jae;Jeong, Byung-Ryong
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2001.04b
    • /
    • pp.39-40
    • /
    • 2001
  • This experiment was conducted to investigate the effect of root zone heating on the growth of cut minirose Rosa hybrida L. ′Little Marble′ in winter season. Effects of four different root zone temperatures of 16, 20, 24$^{\circ}C$ and non-heating control on the growth and productivity were compared. Harvested cut-flowers were measured for stem length, stem diameter, fresh and dry weights, numbers of leaves, stems and flowers, days to flower, and chlorophyll concentration. The results showed that mean height was the greatest at 16$^{\circ}C$. Days to flower was the shortest at 24$^{\circ}C$. Fresh and dry weights of top (shoot+leaf+flower), shoot and leaf were the greatest at 2$0^{\circ}C$. Stem and flower numbers were the greatest at 16$^{\circ}C$, but leaf number was the greatest at 2$0^{\circ}C$. Mean cut flower yield was the greatest at 16$^{\circ}C$. Chlorophyll concentration was slightly higher at 16$^{\circ}C$, but was not significantly different among the treatments. Stem diameter was the greatest at 2$0^{\circ}C$. Dry matter was the greatest at 24$^{\circ}C$. Total yield of cut rose stems increased with increasing temperature. Combined heating could save 24% in fuel cost as compared to the air heating alone. The results obtained suggested that optimal root zone temperature for the growth of cut rose "Little Marble" was 2$0^{\circ}C$, and the greenhouse heating energy can be saved by minimal air heating combined with root zone heating to 2$0^{\circ}C$.

  • PDF

Effect of Root-zone Local Cooling on Seedling Growth of Tomato (근권부 국부 냉방이 토마토 묘 생육에 미치는 영향)

  • Kim, Eun Ji;Hwang, Hyunseung;Ju, Se Hun;Na, Haeyoung
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.286-291
    • /
    • 2022
  • The effect of root-zone local cooling on seedling growth of tomato was investigated. Lower pipe cooling was used for local cooling of the root zone, and the root zone temperature was set at 20 and 25℃. There was no difference in plant height, root length, and leaf number according to local cooling temperature. Leaf area, fresh weight, dry weight, and chlorophyll content of the shoot and root was higher in the 25℃ than those of 20℃ at 28 DAS. These results showed that cooling for seedling growth of tomato 25℃ is sufficient considering energy efficiency. This study will be helpful in the development of local cooling technology that can reduce the energy required for cooling during the production of tomato seedlings in the high temperature season.

Experimental study of welding effect on grade S690Q high strength steel butt joint

  • Chen, Cheng;Chiew, Sing Ping;Zhao, Mingshan;Lee, Chi King;Fung, Tat Ching
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.401-417
    • /
    • 2021
  • This study experimentally reveals the influence of welding on grade S690Q high strength steel (HSS) butt joints from both micro and macro levels. Total eight butt joints, taking plate thickness and welding heat input as principal factors, were welded by shielded metal arc welding. In micro level, the microstructure transformations of the coarse grain heat affected zone (CGHAZ), the fine grain heat affected zone (FGHAZ) and the tempering zone occurred during welding were observed under light optical microscopy, and the corresponding mechanical performance of those areas were explored by micro-hardness tests. In macro level, standard tensile tests were conducted to investigate the impacts of welding on tensile behaviour of S690Q HSS butt joints. The test results showed that the main microstructure of S690Q HSS before welding was tempered martensite. After welding, the original microstructure was transformed to granular bainite in the CGHAZ, and to ferrite and cementite in the FGHAZ. For the tempering zone, some temper martensite decomposed to ferrite. The performed micro-hardness tests revealed that an obvious "soft layer" occurred in HAZ, and the HAZ size increased as the heat input increased. However, under the same level of heat input, the HAZ size decreased as the plate thickness increased. Subsequent coupon tensile tests found that all joints eventually failed within the HAZ with reduced tensile strength when compared with the base material. Similar to the size of the HAZ, the reduction of tensile strength increased as the welding heat input increased but decreased as the thickness of the plate increased.

Advanced electromagnetic wave-based method for characterizing defects in cement-based structures using time domain reflectometry

  • Dongsoo Lee;Jong-Sub Lee;Young K. Ju;Yong-Hoon Byun
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.621-630
    • /
    • 2024
  • This study presents novel electromagnetic wave-based methods for evaluating the integrity of cement-based structures using time domain reflectometry (TDR). Two cement-based plates with embedded rebars are prepared under sound and defective conditions. TDR tests are carried out using transmission lines with various numbers of artificial joints, and electromagnetic waves are measured to assess the integrity of the plates. The experimental results show that the travel time of electromagnetic waves is consistently longer in sound plates than in defective ones, and an increase in the reflection coefficients is observed in the defect zone of the defective plates. Electromagnetic wave velocities are higher in the defective plates, especially when connectors are present in the transmission line. A novel approach based on the area of the reflection coefficient provides larger areas in the defective plates, and the attenuation effect of the electromagnetic waves induces a difference in the areas of the reflection coefficient between the two defect conditions. An alternative method using the centroid of the defect zone slightly overestimates the location of the defect zone. The length of the defect zone is estimated using the defect ratio and wave velocities of cement, air, and plate. The length of the defect zone can also be calculated using the travel times within the plate, total measured length of the plate, and wave velocities in the cement and air. Therefore, the electromagnetic wave-based methods proposed in this study may be useful for estimating the location and length of defect zones by considering attenuation effects.

EFFECT OF MICROSTRUCTURE ON MECHANICAL PROPERTIES IN FRICTION STIR WELDED CAST A356 ALUMINUM ALLOY

  • Sato, Yutaka S.;Kaneko, Takayasu;Urata, Mitsunori;Kokawa, Hiroyuki
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.493-498
    • /
    • 2002
  • Friction stir welding (FSW) is a relatively new solid-state joining process which can homogenize the heterogeneous microstructure by intensely plastic deformation arising from the rotation of the welding tool. The present study applied the FSW to an A356 aluminum (AI) alloy with the as-cast heterogeneous microstructure in the T6 temper condition, and examined an effect of microstructure on mechanical properties in the weld. The base material consisted of Al matrix with a high density of strengthening precipitates, large eutectic silicon and a lot of porosities. The FSW led to fragment of the eutectic silicon, extinction of the porosities and dissolution of the strengthening precipitates in the Al alloy. The dissolution of strengthening precipitates reduced the hardness of the weld around the weld center and the transverse ultimate tensile strength of the weld. Longitudinal tensile specimen containing only the stir zone showed the roughly same strength as the base material and a much larger elongation. Moreover, Charpy impact tests indicated that the stir zone had remarkably the higher absorbed energy than the base material. The higher mechanical properties of the stir zone were attributed to a homogenization of the as-cast heterogeneous microstructure by FSW.

  • PDF

The Weldability of a Thin Friction Stir Welded Plate of Al5052-H32 using High Frequency Spindle (고주파스핀들을 이용한 박판 알루미늄합금소재(Al5052-H32)의 마찰교반접합에 의한 용접성 평가)

  • Joo, Young-Hwan;Park, Young-Chan;Lee, Yong-Moon;Kim, Kwang-Ho;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.90-95
    • /
    • 2017
  • Recently, smaller and lighter products have become of interest in industry applications that increasingly demand thin plate joints of thickness 1.0 mm or less using friction stir welding. In this study, high frequency spindles that run at 3,500-6,500 rpm are introduced for thin friction stir-welded plates. Weldability tests are performed for the butt-joint method of Al5052-H32 alloy of 1.0 mm thickness under 3,500-6,500 rpm spindle revolution with 250-400 mm/min feed speed. An optical microscope was used to analyze the bid structure of the welded zone and stir zone. The tensile-strength and hardness of the welded zone were then measured.

A Case of Extranodal Marginal Zone B-cell Lymphoma in Both Parotid Glands (양측 이하선에 발생한 림프절 외 변연부 B세포 림프종 1예)

  • Kim, So Yean;Nam, Woo Joo;Kim, Tae Hwan;Lee, Sang Hyuk
    • Korean Journal of Head & Neck Oncology
    • /
    • v.33 no.1
    • /
    • pp.65-71
    • /
    • 2017
  • Primary malignant lymphoma of the parotid gland is extremely rare entity and seldom described in the literature. Extranodal marginal zone B-cell lymphoma of mucosa associated lymphoid tissue(MALT lymphoma) is a relatively indolent disease and tents to remain localized for prolonged period of time. MALT lymphoma can be diagnosed after immunohistopathological study. Clinically, most MALT lymphomas are localized at the time of diagnosis and may be curable with local therapy alone, either surgery or radiotherapy. We present a case of MALT lymphoma in both parotid glands of patient who detected a left infraauricular huge mass as a first symptom and underwent surgical excision and immediate reconstruction using sternocleidomastoid myocutaneous flap.

Effect of Welding Condition and Tool Shape on Defect Formation of Extruded AA6005 with Non-uniform Thickness using Load-Controlled Friction Stir Welding Technique (두께 불균일 AA6005 압출재의 하중제어 마찰교반접합에서 접합 조건과 툴 형상이 결함발생에 미치는 영향)

  • Yoon, Tae-Jin;Kang, Myung-Chang;Jung, Byong-Ho;Kang, Chung-Yun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.45-51
    • /
    • 2013
  • Friction stir welding using aluminum alloys has been widely applied for transportation vehicles because of the light specific weight, which can be used to obtain sound joint and high mechanical properties. This study shows the effects of rotation speed, welding speed, welding load, and tool shape on defect formation with extruded AA6005, which is used for railway vehicle structures of non-uniform thickness welded by friction stir welding using load control systems. Optical microscopy observations and liquid penetrant testing of each FSW joint were carried out in order to observe defect formation. Two kinds of defects, that of probe wear and that of lack of penetration in the bottom of the welded zone, were observed. In the case of using a taper shaped tool, the defect free zone is very narrow, within 100 kgf; however, in case of using a cylindrical shape tool, the defect free zone is wider.

The Design and Implementation of School-Zone Safety Management System Based onContext-Aware (상황인식 기반의 스쿨존 안전 관리 시스템 설계 및 구현)

  • Lee, Jin-Kwan;Lee, Chang-Bok;Park, Sang-Jun;Lee, Jong-Chan;Park, Ki-Hong
    • Convergence Security Journal
    • /
    • v.9 no.1
    • /
    • pp.11-17
    • /
    • 2009
  • The object of this paper is to design a school-zone safety management system based on context-aware, integrated with computing technology. When it occurs to kidnap of elementary school students, the monitoring device creates context information through a combination object extraction and context-aware technology and alarm administrator about an emergency situation. In addition, the proposed system that requires a human perspective, a railroad crossing, statistics research of traffic, and a variety of applications such as factory automation systems can be used to be the best choice.

  • PDF