• Title/Summary/Keyword: schlieren system

Search Result 97, Processing Time 0.042 seconds

An Experimental Study on Flow Characteristics of a Supersonic Impinging Jet (초음속 충돌제트의 유동특성에 대한 실험적 연구)

  • 신필권;신완순;이택상;박종호;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.3
    • /
    • pp.10-19
    • /
    • 1998
  • When an under-expanded supersonic jet impinges on an inclined flat surface, a complex flow structure is established due to the intersection between the flat surface and the shock system of the free jet. This study reports on an experimental results of flows due to under-expanded axisymmetric sonic jets impinging on flat plate. Plate inclination from $60^{\cire}$~$90^{\cire}$ were investigated by means of detailed measurements of the surface pressure and schlieren photograph and surface flow visualization. The schlieren photograph are consistent with the pressure distribution and the surface flow visualization pictures are clearly related to the pressure distributions. The maximum wall pressure is found to be large on the inclined plate than on the perpendicular plate.

  • PDF

Propagation Characteristics of the Impulse Wave Discharged from the Inclined Exit of a Pipe (관의 경사출구로부터 방출되는 펄스파의 전파특성)

  • Lee, D.H.;Lee, M.H.;Kweon, Y.H.;Kim, H.D.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.943-949
    • /
    • 2002
  • The propagation of the impulse wave discharged from the Inclined exit of a pipe is investigated through shock tube experiment and numerical computations. The pressure histories and directivities of the impulse wave propagating outside from the exit of pipe with several different configurations are analyzed for the range of the incident shock wave Mach number between 1.1 and 1.4. In the shock tube experiments, the impulse waves are visualized by a Schlieren optical system for the purpose of validation of computational work. Computations using the two-dimensional. unsteady, compressible, Euler equations are carried out to represent the experimented impulse waves. Computed Schlieren images predict the experimented impulse waves with a good accuracy. The results obtained show that for the radial direction the peak pressure of the impulse wave discharged depends upon the Inclined angle of the exit of the pipe. but for the axial direction it is almost constant regardless of the inclined angle of the pipe exit.

An study on the ramp tabs for thurst vector control symmetrically installed at the supersonic nozzle exit (초음속 노즐 출구에 대칭적으로 설치한 추력방향제어장치인 램프 탭의 연구)

  • Kim, Kyoung-Rean;Ko, Jae-Myoung;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.32-37
    • /
    • 2007
  • Aerodynamic forces and moments have been used to control rocket propelled vehicles. If control is required at very low speed, Those systems only provide a limited capability because aerodynamic control force is proportional to the air density and low dynamic pressure. But thrust vector control(TVC) can overcome the disadvantages. TVC is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. In this paper, the conceptual design and the study on the tapered ramp tabs of the thurst vector control has been carried out using the supersonic cold flow system and schlieren system. This paper provides the thrust spoilage, three directional forces and moments and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

Experimental Study on the Static Stability of a Sounding Rocket Model in the Supersonic Wind Tunnel (과학로켓 모델의 정적 안정성에 대한 초음속풍동 실험연구)

  • Lee, Sang-Hyun;Cho, Hwan-Kee;Sung, Hong-Gye;Kim, Jin-Kon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.856-861
    • /
    • 2010
  • In this work, experiments on hybrid sounding rocket were conducted to investigate the aerodynamic characteristics and analyze longitudinal static stability. Tests were performed on 1/10 scale models of sounding rocket through Mach number ranging from 1.75 to 2.5 and for angle of attack from $0^{\circ}$ to $6^{\circ}$. Aerodynamic forces and moments were measured by means of a 4 component internal balance. With measured forces and moments, static stability characteristics of rocket were calculated. Tests were made for three models with different length to determine the effect of body length. The visualization of shock waves was carried out by Schlieren optical system to observe variations of shock waves with Mach number and angle of attack.

The Consideration in Terms of Pressure Probe Used in Experiments of Supersonic Wind Tunne II (초음속풍동 실험에서 사용하는 압력측정 Probe에 대한 고찰 II)

  • Lee, Jae-Ho;Lee, Yeong-Bin;Choi, Joong-Keun;Choi, Jong-Ho;Yoon, Hyun-Gull;Kim, Kyu-Hong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.359-363
    • /
    • 2011
  • In this paper, the characteristic of pressures had been analyzed with a series of shapes that are pressure probes used in supersonic wind tunnel. When a performance of supersonic wind tunnel is evaluated, the Mach number is calculated by using the ratio of static pressure in test section wall to total pressure in settling chamber. Also the flow condition can be visualized by schlieren system. However a number of limitations exist to measure pressure of test section due to high speed and boundary layer effect. Therefore a specific pressure probe is needed for evaluating flow condition in test section at a various of positions. In the paper, experiments were conducted in terms of some pitot probes and the results were compared and analyzed.

  • PDF

A Development of Plasma Jet to Realize Ultra Lean Burn (초희박 연소를 실현하기 위한 플라즈마 제트의 개발)

  • 오병진;박정서;김문헌
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.213-221
    • /
    • 1998
  • The investigation regarding the ignition system of a plasma jet explored by using a constant volume vessel. The purpose of this study is to elucidate relation between the characteristics of the configuration and jet ejection of plasma jet plug, when the sub energy were supplied at plasma jet ignition system. From the results of a visualization by the schlieren system, the jut ejection for plasma jet ignition are depended on the jet plug configuration and sub energy, but the configuration of plasma jet plug is more influenced than the sub energy on the plasma jet ejection. And the plasma jet ignition strongly influences upon the combustion enhancement than the conventional spark ignition.

  • PDF

The Study of Aerodynamic Characteristics for the Ram-jet Projectile (렘제트탄의 공기역학적 특성 연구)

  • Park S. J.;Shin P. K.;Lee T. S.;Kim K. R.;Park J. H.;Kim Y. G.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.751-754
    • /
    • 2002
  • The SFU(Solid Fuel Ram-Jet) propulsion is attractive for projectiles because of the combination of high propulsive performance and low system complexity more than conventional projectiles. The Objective of this research was to characterize the inlet aerodynamic characteristics (centerbody & pilot type) in SFRJ. Diffuser static pressure & combustion chamber pressure was tested and the AoA was changed $0^{\circ}\;and\;4^{\circ}$ at Mach number of 3.0 for performance estimate. The performance study of inlet was carried out with the Schlieren system and Supersonic cold-flow system. A Computational fluid dynamic solution is applied internal flow of inlet and the solutions are compared with experimental results.

  • PDF

Flame Propagation Characteristics Through Suspended Combustible Particles in a Full-Scaled Duct (이송 배관 내 분진폭발의 화염전파특성)

  • Han, OuSup
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.572-579
    • /
    • 2009
  • This study is to investigate experimentally the flame structure and propagation mechanism in dust explosions and to provide the fundamental knowledge. Upward propagating laminar dust flames in a vertical duct of 1.8 m height and 0.15 m square cross-section are observed and flame front is visualized using by a high-speed video camera. Also, the thicknesses of preheated and reaction zone have been determined by a schlieren, electrostatic probe and thermocouple. The thickness of preheated zone in lycopodium dust flame is observed to be 4~13 mm, about several orders of magnitude higher than that of premixed gaseous flames. From the experimental results by a PIV(Particle Image Velocimetry) system, a certain residence time of the unburned particle in preheated zone is needed to generate combustible gas from the particle. The residence time will depend on preheated zone thickness, particle velocity and flame propagation velocity.

Feasibility Study on Detection of Defective Elements in a Linear Phased Array Transducer through Ultrasonic Field Analysis and Visualization (초음파 음장해석 및 가시화를 통한 선형 위상차배열 트랜스듀서의 결함요소 검출 가능성 연구)

  • Choi, Kwang-Yoon;Yang, Jeong-Won;Ha, Kang-Lyeol;Kim, Moo-Joon;Kim, Jung-Soon;Lee, Chae-Bong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.416-423
    • /
    • 2009
  • The ultrasonic pressure fields for the 3 MHz linear phased array transducer with sixteen piezoelectric elements of which one may not be operated by defect were simulated theoretically and measured experimentally using a visualization system of the Schlieren method. The simulation results for steering angles of $0^{\circ}$ and $30^{\circ}$ show that the side-lobe patterns of the transducer including a defective element is quite different from the transducer with all normal elements, and those patterns are in good agreement with the results of visualization. It is shown that the defective elements in a linear array transducer can be detected by comparison of the simulated and the visualized side-lobe patterns in two dimensional acoustic fields.

Supersonic Moist Air Flow with Condensation in a Wavy Wall Channel

  • Ahn, Hyung-Joon;Kwon, Soon-Bum
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.492-499
    • /
    • 2001
  • The characteristics of Prand시-Meyer expansion of supersonic flow with condensation along a wavy wall in a channel are investigated by means of experiments and numerical analyses. Experiments are carried out for the case of moist air flow in an intermittent indraft supersonic wind tunnel. The flow fields are visualized by a Schlieren system and the distributions of static pressure along the upper wavy wall are measured by a scanning valve system with pressure transducers. In numerical analyses, the distributions of streamlines, Mach lines, iso-pressure lines, and iso-mass fractions of liquid are obtained by the two-dimensional direct marching method of characteristics. The effects of stagnation temperature, absolute humidity, and attack angle of the upper wavy wall on the generation and the locations of generation and reflection of an oblique shock wave are clarified. Futhermore, it is confirmed that the wavy wall plays an important role in the generation of an oblique shock wave and that the effect of condensation on the flow fields is apparent.

  • PDF