• Title/Summary/Keyword: schlieren system

Search Result 97, Processing Time 0.025 seconds

Examination of Optimal Reaction Mechanism in Oxygen Enriched Condition (산소부화조건에서의 반응기구 검토)

  • Han, Ji-Woong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.247-253
    • /
    • 2003
  • Burning velocities of conventional methane flame and oxygen-enriched methane flame were determined by experimentally and numerically at atmospheric pressure in order to examine the validity of various detailed reaction mechanisms in oxygen-enriched flame. The schlieren system was adopted to obtain the burning velocity of flame stabilized on a circular nozzle. Premix code was employed to compute the burning velocity. Three reaction mechnisms were tested at several oxygen enrichment level, whose names are GRI 3.0, MB(Miller and Bowman) and LKY(Lee Ki Yong) reaction mechanism. Sensitivity analysis was also performed to discriminate dominantly affecting reaction on burning velociy. The results showed that conventional reaction mechanisms originally based on methane-air flame were underpredict the burning velocity at high oxygen-enrichment level. The modified GRI 3.0 reaction mechanism based on our experimental results was suggested and shows a good agreement in estimating the burning velocity and the NO number density of oxygen-enriched flame.

  • PDF

An experimental study on the flow characteristics of a 2-D supersonic turbine with pressure ratio (압력비에 따른 2차원 초음속 터빈의 유동특성에 대한 실험적 연구)

  • Jeong Soo-In;Kim Kui-Soon;Kim Jin-Han;Lee Eun-Seok;Cho Jong-Jae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.99-108
    • /
    • 2004
  • In this paper, a small supersonic wind tunnel is designed and built to study the flow characteristics of a supersonic impulse turbine. The flow is visualized by means of a single pass Schlieren system. The supersonic cascade with 2-dimensional supersonic nozzle was tested over a wide range of pressure ratio. Highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions are observed.

  • PDF

Comparison of Liquid- and Vapor-Phase Spray Characteristics of E85 Fuel using Schlieren Visualization Technique (쉴리렌 가시화 기법을 이용한 E85 연료의 액상 및 기상 분무 비교)

  • Park, Suhan;Chang, Mengzhao
    • Journal of Institute of Convergence Technology
    • /
    • v.8 no.1
    • /
    • pp.9-13
    • /
    • 2018
  • The purpose of this study is to investigate the liquid- and vapor-phase spray characteristics, such as spray tip penetration and spray angle using gasoline direct injection (GDI) injector with multi-hole. The vapor-phase spray was captured by the Schlieren visualization system, which consists of high-speed camera, LED lamp, concave mirrors, and knife-edge. The liquid-phase spray was visualized by Mie-scattering techniques. Both spray images of vapor- and liquid-phase were visualized under 373 K of ambient temperature, 1 bar of ambient pressure, and 100/200 bar of injection pressure. The energizing duration was fixed at 1.5 ms. From the analysis of experimental results, it revealed that the increased injection pressure induced an early vaporization due to the improvement of droplet atomization. The spray tip penetration and spray angle in vapor-phase were higher than those in liquid-phase. The difference in the spray tip penetration between vapor- and liquid-spray gradually increased with the time elapsed after the injection. Even with the spray angle characteristics, it was found that the difference between the spray angle of liquid and vapor spray gradually grew after they entered steady-state conditions.

A Visualization Study on the Effects of Ignition Systems on the Flame Propagation in a Constant Volume Combustion Chamber (가시화를 이용한 정적연소기에서 점화장치가 화염전파에 미치는 영향에 관한 연구)

  • Song, Jeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1652-1661
    • /
    • 2000
  • A visualization study using the schlieren method is adopted in an optically-accessible, cylindrical constant volume combustion chamber to identify the mechanism of ignition energy and ignition system interaction in spark ignited, lean gasoline-air mixture. In order to research the effects of ignition system on flame propagation, two kinds of ignition system are designed, and several kinds of spark plugs are tested and evaluated. To control the discharge energy, the dwell time is varied. The initial flame development is quantified in terms of 2-D images which provides information about the projected flame area and development velocity as a function of ignition system and discharge energy. The results show that high ignition energy and extended spark plug gap can shorten the combustion duration in lean mixtures. The material, diameter and configuration of electrodes the flame development by changing the transfer efficiency from electrical energy to chemical energy and discharge energy. However these factors do not affect of flame development as much a ignition energy or extended gap does.

A Study on the Performance of Ramp Tabs Asymmetrically Installed in the Supersonic Nozzle Exit (초음속 노즐 출구에 비대칭적으로 설치한 램프 탭의 성능 연구)

  • Kim, Kyoung-Rean;Ko, Jae-Myoung;Park, Jong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.934-939
    • /
    • 2007
  • Thrust vector control(TVC) is the method which generates the side force and moment by controlling the exhausting gas directly from the supersonic nozzle to change the trajectory of a missile quickly. In this paper, performance study on the tapered ramp tabs asymmetrically installed in the supersonic nozzle exhaust for the thurst vector control has been carried out using the supersonic cold flow system. To study the shock wave structure and location of the oblique shock wave produced by the ramp tab, the flow field visualization using the schlieren system is conducted. This paper provides the thrust spoilage, three directional forces and moments and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

The Study on the Effects of Mixer Configurations on Fluid Mixing Characteristics in SCR Systems (SCR 시스템의 믹서 구조 특성에 따른 유동 혼합 특성에 관한 연구)

  • Seo, Jin-Won;Lee, Kyu-Ik;Oh, Jeong-Taek;Choi, Yun-Ho;Lee, Jong-Hwa;Park, Jin-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.192-199
    • /
    • 2008
  • The key issues for the reduction technologies of the exhaust gas from diesel engine being developed are to reduce particulate matters and NOx. The SCR system is known to be one of the most efficient and stable technologies to remove NOx through the mixing of NOx and urea solution. In the present research, the effects of mixer configurations of SCR system have been investigated to enhance the SCR performance. First, a Schlieren technique is employed to visualize the mixing characteristics of urea solution and exhaust gas. The results show that a mixer is essential to obtain proper fluid mixing. In addition, numerical studies have been made to understand the mixing characteristics through the comparison of the mal-distribution index of concentration at the several locations of the diffuser. In particular, the effects of number of blade and mixer angles on mixing characteristics were studied. The results show that the blade angle has a larger effect on the mixing characteristics than the number of blades.

Experimental Investigation of Impinged Spray Characteristics of Oxygenated fuels Using BOS Method (BOS법을 이용한 함산소 연료들의 충돌분무특성에 관한 실험적 연구)

  • Bang, Seung Hwan
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.111-118
    • /
    • 2020
  • This paper describes the effect of DME, biodiesel blended fuels on the macroscopic spray characteristics in a high pressure diesel injection system using Background Oriented Schlieren (BOS) method. The BOS method for visualization of impingement evaporation sprays to analyze macroscopic spray properties and evolutionary processes. In this work, the blending ratio of DME in the blended fuel are 0, 50, 100% by weight ratio. In order to investigate the macroscopic impinged spray characteristics under the various injection parameters and blending ratio. In this work, a mini-sac type single-hole nozzle injector with nozzle hole was length 0.7 mm and diameter of 0.3 mm was used. According to the result, the spray area of the collision wall increased as the DME mixing ratio increased, and the evolutionary pattern showed a stepwise increase due to the collision effect of the wall. Also, results of impinged spray area were increased according to increasing injection pressure.

Experimental Study on Stream Turbine Cascade Flow (증기터빈 익렬유동에 관한 실험적 연구)

  • 권순범;윤의수;김병지
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2177-2183
    • /
    • 1994
  • The rapid expansion or condensible gas such as moist air of steam gives rise to nonequilibrium condensation. As a result of irreversibility of condensation process in the supersonic cascade flow of low pressure steam turbine, the entropy of the flow is increased, and the efficiency of the turbine is decreased. In the present study, to investigate the flow of moist air in 2-dimensional cascade made as the configuration of the tip section of the last actual steam turbine moving blade, the static pressure at both sides of pressure and suction of blade are measured by static pressure taps and the distribution of Mach number on both surfaces of the blade are obtained by using the measured static pressure. Also, the flow field is visualized by a schlieren system. From the experimental results, the effects of the stagnation temperature and specific humidity on the flow properties in a 2-dimensional stationary cascade of a practical steam turbine blade are clearly identified.

Effects of Diluents on Cellular Instabilities in Outwardly Propagating Spherical Syngas-Air Premixed Flames

  • Vu, Tran Manh;Park, Jeong;Kwon, Oh-Boong;Kim, Jeong-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.191-196
    • /
    • 2009
  • Experiments were conducted in a constant pressure combustion chamber using schlieren system to investigate the effects of carbon dioxide/nitrogen/helium diluents on cellular instabilities of syngas-air premixed flames at room temperature and elevated pressures. Laminar burning velocities and Markstein lengths were calculated by analyzing high-speed schlieren images at various diluent concentrations and equivalence ratios. Experimental results showed substantial reduction of the laminar burning velocities and of the Markstein lengths with the diluent additions in the fuel blends. Effective Lewis numbers of helium-diluted syngas-air flames increased but those of carbon dioxide- and nitrogen-diluted syngas-air flames decreased in increase of diluents in the reactant mixtures. With helium diluent, the propensity for cells formation was significantly diminished, whereas the cellular instabilities for carbon dioxide-diluted and nitrogen-diluted syngas-air flames were not suppressed.

  • PDF

An Experimental Study on the Flow Characteristics ofa Supersonic Turbine Cascade as Pressure Ratio

  • Cho, Jong-Jae;Jeong, Soo-In;Kim, Kui-Soon;Lee, Eun-Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.2
    • /
    • pp.9-17
    • /
    • 2004
  • In this paper, a small supersonic wind tunnel was designed and built to studythe flow characteristics of a supersonic impulse turbine cascade by experiment. Theflow was visualized by means of a single pass Schlieren system. The supersoniccascade with 3-dimensional supersonic nozzle was tested over a wide range ofpressure ratio. Highly complicated flow patterns including shocks, nozzle-cascadeinteraction and shock boundary layer interactions were observed.