• Title/Summary/Keyword: schlieren

Search Result 283, Processing Time 0.028 seconds

Study of the Shock Wave Propagating through a Branched Pipe Bend (분지관을 전파하는 약한 충격파에 관한 수치해석적 연구)

  • Kim Hyun-Sub;Szwaba Ryszard;Kim Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.165-168
    • /
    • 2002
  • This paper describes the dynamics of the weak shock wave propagating inside some kinds of branched pipe bends. Computations are carried out by solving the two-dimensional, compressible, unsteady Euler Equations. The second-order TVD(Total Variation Diminishing) scheme is employed to discretize the governing equations. For computations, two types of branched pipe($90^{\circ}$ branch,$45^{\circ}$ branch) with a diameter of D are used. The incident normal shock wave is assumed at D upstream of the pipe bend entrance, and its Mach number is changed between 1.1 and 2.4. The flow fields are numerically visualized by using the pressure contours and computed schlieren images. The comparison with the experimental data performed for the purpose of validation of computational work. Reflection and diffraction of the propagating shock wave are clarified. The present computations predicted the experimented flow field with a good accuracy.

  • PDF

Parametric Study of Subscale Ejector for Pressure Recovery of Chemical Lasers (화학레이저 압력회복을 위한 축소형 이젝터의 성능변수)

  • Kim Sehoon;Kim Hyungjun;Kwon Sejin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.135-138
    • /
    • 2002
  • High-speed ejection of burnt gases from the resonator cavity is essential for performance optimization of the chemical laser system. Additionally, to maintain the population of lasing species at a level for maximum optical power, the pressure within the cavity must be of order of 10 torr. In the present study, a small-scale ejector was designed and built for parametric study of its performance. High-pressure air was used as a motive gas. Measurements include schlieren visualization and pressure distribution trace near the ejector nozzle and along the diffuser downstream of the ejector. preliminary tests showed performance of the ejector is a function of parameters including mass flow rate and stagnation pressure of the motive gas, ejector nozzle area ratio, throat area of the diffuser downstream of the ejector.

  • PDF

Visualization and Measurement of Fluids with Real-time Holographic Interferometry (실시간 홀로그래픽 간섭법을 이용한 유체의 가시화)

  • Eom, Chul;Kang, Young-June;Kim, Dong-Woo;Ryu, Weon-Jae;An, Jung-Keun
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.539-544
    • /
    • 2001
  • The holographic measurement techniques can be applied to various industrial fields such as automobile, airplane, construction, electronics, medical, mechanics and physics. The visualization of fluids is very important in aerodynamics, heat transfer and stress analysis. There are classically optical methods such as shadowgraph, schlieren method, and Mach-Zehnder interferometry for visualizing the fluid flow phenomena. But, it is difficult to understand the continuous state of fluids well in those methods. In this study, the real-time holographic interferometer with high-speed camera is applied to the flow visualization. In addition, collimated laser beam and rotating wedge are used for recording and formation of carrier fringes, respectively.

  • PDF

An Experimental Study on the Impulse Wave Discharged from the Exit of a Perforated Pipe (다공관 출구로부터 방출되는 펄스파에 관한 실험적 연구)

  • 허성욱;이동훈;김희동
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.67-71
    • /
    • 2003
  • The propagation characteristics of the impulse wave discharged from the exit of a perforated pipe is investigated through a simple shock tube facility. The pressure histories and directivities of the impulse wave propagating outside from the exit of pipe with several different configurations are analyzed for the range of the incident weak shock wave Mach number between 1.02 and 1.2. In the shock tube experiments, the impulse wave are visualized by a Schlieren optical system for the purpose of understanding its propagation characteristics. The experimental results show that for the near sound field the impulse noise strongly propagates toward to the pipe axis, but for the far sound field the impulse noise uniformly propagates toward to the omnidirections, indicating that the directivity pattern is almost same regardless of the pipe type. Especially, it is shown that the perforated pipe has a little performance to reduce the impulse noise only for the near sound field

  • PDF

A Study of the Propagation of Turbulent Premixed Flame Using the Flame Surface Density Model in a Constant Volume Combustion Chamber

  • Lee, Sangsu;Kyungwon Yun;Nakwon Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.564-571
    • /
    • 2002
  • Three-dimensional numerical analysis of the turbulent premixed flame propagation in a constant volume combustion chamber is performed using the KIVA-3V code (Amsden et. al. 1997) by the flame surface density (FSD) model. A simple near-wall boundary condition is eaployed to describe the interaction between turbulent premixed flame and the wall. A mean stretch factor is introduced to include the stretch and curvature effects of turbulence. The results from the FSD model are compared with the experimental results of schlieren photos and pressure measurements. It is found that the burned mass rate and flame propagation by the FSD model are in reasonable agreement with the experimental results. The FSD combustion model proved to be effective for description of turbulent premixed flames.

Propagation Speed Characteristics of Premixed Methane-Air Flame in a Combustion Chamber with Model of Engine Cylinder (엔진실린더 모형 연소실내의 메탄-공기 예혼합기의 화염전파속도 특성)

  • 전충환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.225-231
    • /
    • 1998
  • Flame propagation speed characteristics of methante-air mixtures were experimentally investigated in combustion chamber modelled engine. Flame propagation process was known as a funtion of equivalence ratio initial pressure and initial temperature. Ion probe and schlieren photograph were applied to measure the local flame speed and flame radius in quiescent mixtures. Pressure was also measured to make sure of the reproducibility and to apply combustion analysis. Burning velocity was calculated from the flame propagation speed and combustion analysis. Flames were developed faster with higher initial pressure and initial temperature but showed maximum propagation speed at equivalence ratio 1.1 regardless of initial pressure and temperature. Local flame speed was maximum values at near midpoint between center and wall.

  • PDF

Passive Control of the Impulse Wave Using a Helical Vane (Helical Vane 을 이용한 펄스파의 피동제어)

  • Yang, Soo-Young;Lee, Dong-Hoon;Kim, Heuy-Dong;Setoguchi, Toshiaki
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.792-797
    • /
    • 2003
  • A helical vane is applied to reduce the magnitude of the impulse wave discharged from the exit of a duct. A shock tube with an open end is used to investigate the effect of the helical vanes on the impulse wave magnitude. Four different types of helical vanes are installed into the low-pressure tube of shock tube. The magnitude of the incident shock wave is varied below 1.25, and the magnitude of impulse wave is measured using a pressure transducer mounted on a wedge probe. Instant images of the impulse wave are obtained by means of the Schlieren optical method. The present experimental results show that the helical vane considerably reduces the magnitude of the impulse wave and the vane effects are more remarkable for stronger incident shock wave.

  • PDF

Effect of Nozzle Lip Thickness on the Characteristics of Supersonic Jet Noise (노즐립 두께가 초음속 제트의 소음특성에 미치는 영향)

  • Kweon, Yong-Hun;Aoki, Toshiyuki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.520-525
    • /
    • 2003
  • Supersonic jet issuing from a nozzle invariably cause high-frequency noises. These consist of three principal components ; the turbulent mixing noise, the broadband shock-associated noise, and the screech tone. In present study, it was experimentally investigated to the effect of nozzle lip thickness on the characteristics of supersonic jet noise. The convergent-divergent nozzle of a design Mach number 2.0 was used in experiment. With three different nozzle-lip thicknesses, the jet pressure ratio was varied in the range between 2.0 and 12.0. Acoustic measurements were conducted by microphones in an anechoic room, and the major structures of the supersonic jets were visualized by a Schlieren optical system to investigate the effect of nozzle lip thickness. The measured results show that the characteristics of supersonic jet noise, such as overall sound pressure level (OASPL) and screech frequency, strongly depend upon the thickness of nozzle-lip.

  • PDF

Measurement of Laminar Flame Speed of Syngas(H2/CO)/Air Premixed Flame using the Bunsen Burner Method (분젠 버너법을 이용한 합성가스(H2/CO)/공기 예혼합화염의 층류 연소속도 측정)

  • Jeong, Byeonggyu;Lee, Kee-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.181-183
    • /
    • 2012
  • Syngas laminar flame speed measurements were carried out at atmospheric pressure and ambient temperature using the Bunsen flame configuration with nozzle burner as a fundamental study on flame stability of syngas. Representative syngas mixture compositions ($H_2:CO$) such as 25:75%, 50:50% and 70:25% and equivalence ratios from 0.5 to 1.4 were investigated. The measured laminar flame speeds were in good agreement with the previous numerical data as well as experimental data available in the literatures over a wide range of equivalence ratio tested. It was reconfirmed that the laminar flame speed gradually increased with the increase in $H_2$ content in a fuel mixture. In particular, the significant increasing rate of flame speed was observed with the increase in equivalence ratio.

  • PDF

측추력기의 성능 향상에 관한 연구

  • 변영환
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.04a
    • /
    • pp.9-18
    • /
    • 2004
  • 초음속 유동하에서 측추력기 주위의 유동 현상을 실험 및 수치해석을 이용하여 해석하였다. 실험은 버지니아공대의 초음속 풍동과 건국대의 초음속 풍동을 사용하였으며 계산 코드는 Aerosoft 사의 GASP(ver.4.0)과 건국대의 AADL3D를 사용하였다. 실험결과는 Schlieren, Shadow graph 등의 가시화 장치와 압력 센서와 PSP(Pressure Sensitive Paint)를 이용하여 유동장 특성과 압력분포를 구하여 실제 작용되는 힘과 모멘트를 구하였다. 실험조건은 자유류의 흐름이 마하수 4 이고 측추력기와 자유류의 압력비가 532 이었다. 성능향상 방안으로 측추력기 후방에 램프를 설치하는 것을 제안하였으며 이에 대한 실험을 수행하여 수직력에 대한 변화는 없지만 피칭다운 모멘트가 약 $70\%$ 감소함을 보여주어 실제로 성능이 향상되었음을 입증하였다. 또한 측추력기의 성능에 영향을 주는 여러 가지 인자들에 대한 가시화실험을 수행하여 그 이해를 돕고자 하였으며, 현재 건국대에서 보유하고 있는 고속유동 관련 실험장치의 소개와 이를 이용한 연구들을 소개하므로써 압축성 유동장 연구에 이러한 실험장치의 필요성에 대한 이해를 구하고자 한다.

  • PDF