• 제목/요약/키워드: scheelite

검색결과 60건 처리시간 0.023초

상동광산(上東鑛山) 지질광상(地質鑛床) 조사보고(調査報告) (Preliminary Report on the Geology of Sangdong Scheelite Mine)

  • 김옥준;박희인
    • 자원환경지질
    • /
    • 제3권1호
    • /
    • pp.25-34
    • /
    • 1970
  • Very few articles are available on geologic structure and genesis of Sangdong scheelite-deposits in spite of the fact that the mine is one of the leading tungsten producer in the world. Sangdong scheelite deposits, embedded in Myobong slate of Cambrian age at the southem limb of the Hambaek syncline which strikes $N70{\sim}80^{\circ}W$ and dips $15{\sim}30^{\circ}$ northeast, comprise six parallel veins in coincide with the bedding plane of Myobong formation, namely four footwall veins, a main vein, and a hangingwall vein. Four footwall veins are discontinuous and diminish both directions in short distance and were worked at near surface in old time. Hangingwall vein is emplaced in brecciated zone in contact plane of Myobong slate and overlying Pungchon limestone bed of Cambrian age and has not been worked until recent. The main vein, presently working, continues more than 1,500 m in both strike and dip sides and has a thickness varying 3.5 to 5 m. Characteristic is the distinct zonal arrangement of the main vein along strike side which gives a clue to the genesis of the deposits. The zones symmetrically arranged in both sides from center are, in order of center to both margins, muscovite-biotite-quartz zone, biotite-hornblende-quartz zone and garnet-diopside zone. The zones grade into each other with no boundary, and minable part of the vein streches in the former two zones extending roughly 1,000 m in strike side and over 1,100 m in dip side to which mining is underway at present. The quartz in both muscovite-biotite-quartz and biotite-hornblende-quartz zones is not network type of later intrusion, but the primary constituent of the special type of rock that forms the main vein. The minable zone has been enriched several times by numerous quartz veins along post-mineral fractures in the vein which carry scheelite, molybdenite, bismuthinite, fluorite and other sulfide minerals. These quartz veins varying from few centimeter to few tens of centimeter in width are roughly parallel to the main vein although few of them are diagonal, and distributed in rich zones not beyond the vein into both walls and garnet-diopside zone. Ore grade ranges from 1.5~2.5% $WO_3$ in center zone to less than 0.5% in garnet-diopside zone at margin, biotite-hornblende-quartz zone being inbetween in garde. The grade is, in general, proportional to the content of primary quartz. Judging from regional structure in mid-central parts of South Korea, Hambaek syncline was formed by the disturbance at the end of Triassic period with which bedding thrust and accompanied feather cracks in footwall side were created in Myobong slate and brecciated zone in contact plane between Myobong slate and Pungchon limestone. These fractures acted as a pathway of hot solution from interior which was in turn differentiated in situ to form deposit of the main vein with zonal arrangement. The footwall veins were developed along feather cracks accompanied with the main thrust by intrusion of biotite-hornblende-quartz vein and the hangingwall vein in shear zone along contact plane by replacement. The main vein thus formed was enriched at later stage by hydrothermal solutions now represented by quartz veins. The main mineralization and subsequent hydrothermal enrichments had probably taken place in post-Triassic to pre-Cretaceous periods. The veins were slightly displaced by post-mineral faults which cross diagonally the vein. This hypothesis differs from those done by previous workers who postulated that the deposits were formed by pyrometasomatic to contact replacement of the intercalated thin limestone bed in Myobong slate at the end of Cretaceous period.

  • PDF

Search for new phosphors for flat panel displays and lightings using combinatorial chemistry and computational optimization

  • Sohn, Kee-Sun;Jung, Yu-Sun;Cho, Sang-Ho;Kulshreshtha, Chandramouli
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.33-38
    • /
    • 2006
  • An evolutionary optimization process involving genetic algorithm and combinatorial chemistry was employed in an attempt to develop titanate-based red phosphors suitable for tri-color white light emitting diodes We screened a eight-cation oxide system including $(K,Li,Na)_x(Y,Gd,La,Eu)_yTi_zO_{\delta}$ in terms of luminescent efficiency. The combination of genetic algorithm and combinatorial chemistry was proven to enhance the searching efficiency when applied for phosphor screening. As a result, the composition was optimized to be $(Na_{0.92}Li_{0.08})(Y_{0.8}Gd_{0.2})TiO_4:Eu^{3+}$, The luminance of this phosphor was 110 % of that of well-known scheelite variant phosphor at an excitation of 400 nm.

  • PDF

STUDY ON GY NEW MINERAL PROCESSING TECHNOLOGY FOR SHIZHUYUAN POLYMETALLIC ORE

  • Zhang, Zhonghan;Li, Xiaodong;Ye, Zhiping;Guo, Jianguan
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.325-330
    • /
    • 2001
  • Shizhuyuan W-Mo-Bi-Ca $F_2$polymetallic ore is classified to the refractory one due to its complex property, fine dissemination and close association of minerals. Through several years of researches, in line with GY new mineral processing technology developed by Guangzhou Research Institute of Nonferrous Metals, in sulfide flotation circuit, an iso-flotability flowsheet is used to replace original overall bulk flotation flowsheet, and in tungsten flotation circuit, a new chelating type-GY reagent and a special pulp-conditioning system and a new technology of wolframite slime flotation are used to replace the traditional "Caustic Soda Method"$_{[1]}$, the metallurgical performance is greatly improved. Besides, GY New Method has created a favorable condition for comprehensive recovery of fluoride from tungsten flotation tailings. Notable economic benefit has been achieved.d.

  • PDF

일본(日本) 대곡광산산(大谷鑛山産) Pyrrhotite의 성질(性質) (Polymorphic Variations of Pyrrhotite as related to Tungsten-Tin-Copper Mineralization at the Ohtani Mine, Japan)

  • 김문영;나카무라 타카시
    • 자원환경지질
    • /
    • 제19권1호
    • /
    • pp.57-66
    • /
    • 1986
  • The ore deposit of the Ohtani mine is one of representatives of plutonic tungsten-tin veins related genetically to acidic magmatism of Late Cretaceous in the Inner zone of Southwest Japan. Based on macrostructures of vein filling, three major mineralization stages are distinguished by major tectonic breaks. The constituents of ore minerals are scheelite, cassiterite, chalcopyrite, pyrrhotite, sphalerite, with small amounts of cubanite, stannite, galena, native bismuth, bismuthinite, arsenopyrite and pyrite. The relationship between the polymorphic variations of pyrrhotite and the kinds of the associated characteristic of ore mineral, in relation with hypogene mineralization, has been demonstrated. Pyrrhotite of stage I is predominantly of the hexagonal phase (Hpo>Mpo). Pyrrhotite of stage II is mainly of the monoclinic phase ($Hpo{\ll}Mpo$). Pyrrhotite of stage III is a single monoclinic phase ($Hpo{\ll}Mpo$). The compositions of the hexagonal pyrrhotite decrease in Fe content ranging from 47.44 atom % Fe in stage I to 46.88 atom % Fe in stage III.

  • PDF

충주광산 지역 계명산층의 텅스텐 스카른화작용 (Skarn Formation in Metamorphic Rocks of the Chungju Mine Area)

  • 김근수;박맹언
    • 자원환경지질
    • /
    • 제28권3호
    • /
    • pp.185-197
    • /
    • 1995
  • 충주 광산 지역은 계명산층과 이를 관입한 중생대 화강암질 암석으로 구성되며, 이들 화강암질 암석중 백악기초(134 Ma) 흑운모 화강암과 계명산층을 구성하는 석영-운모 편암의 접촉부에서 회중석을 수반하는 스카른 광상이 산출된다. 스카른은 구성광물의 공생 특성과 주 구성광물의 양적인 비에 의해 석류석 스카른대, 규회석 스카른대, 녹염석 스카른대 및 녹니삭 스카른대로 분류된다. 석류석의 화학조성은 초기 순수한 안드라다이트 (>Ad96)에서 후기 알루미늄 함량비가 증가하는 안드라다이트-그라슈라(Ad~50)로 점이적인 변화를 나타내며, 녹염석은 $Fe^{3+}$ 의 함량비가 높은 고용체 상(Ps=35)에서 암루미늄 함량비가 높은 고용체 상(Ps=25)으로 변화하는 양상을 띤다. 광물 공생 및 화학 조성상의 특징으로 볼 때 스카른화 작용은 Ca와 Fe의 활동도가 흑운모 화강암의 접촉부에서 높고 Al, Mg, K 및 Si 활동도는 석영-운모 편암내에 발달되는 스카른에서 증가하는 경향을 나타낸다. 녹염석 스카른대에서 산출되는 회중석의 유체포유물 균질화 온도는 $300{\sim}380^{\circ}C$ 이며 NaCl 상당 염농도는 3-8wt. %로, 석영 및 녹염석 유세포유물 균질화 온도는 $300{\sim}400^{\circ}C$이다. 후기 녹니석 스카른대내에서 수반되는 황화광물의 황 동위원소비는(${\delta}^{34}S$) 황철석 $9.13{\sim}9.51%_{\circ}$, 방연석 $5.85{\sim}5.96%_{\circ}$이며, 공존하는 황철석-방연석 광물쌍에 의한 동위 원소 지질온도는 $283{\pm}20^{\circ}C$이다. 이산화탄소 몰분율($X_{CO_2}$)은 $L-CO_2$가 관찰되지 않으며 $H_2O$ 풍부한 유체포유물로 구성되고 있는점과, 안드라다이트 및 규회석의 광물공생 특성과 대비하여 볼때 약 0.01로 추정된다. 광물공생 및 화학조성, 상 안정 관계, 유체포유물 연구, 동위원소 지질온도계등의 연구 결과에 의해 충주광산 지역 스카른화 작용은 $400{\sim}260^{\circ}C$ 온도 조건과 산소분압이 감소($fo_2=10^{-30}{\sim}10^{-25}$)하는 환경에서 진행되었으며, 텅스텐 광화작용은 이러한 스카른 형성 과정 중 온도의 감소($350^{\circ}C$)와 산소분압이 감소($fo_2=10^{-27}$) 하는 조건에서 수반되었다.

  • PDF

중국 호남성 시죽원 광상의 W-Sn-Bi-Mo광화작용 (W-Sn-Bi-Mo Mineralization of Shizhuyuan deposit, Hunan Province, China)

  • 윤경무;김상중;이현구;이찬희
    • 자원환경지질
    • /
    • 제35권3호
    • /
    • pp.179-189
    • /
    • 2002
  • 중국 호남성 침주시에서 북동 16 km지점에 위치하는 시죽원 다금속 광상의 지질은 원생대의 변성퇴적암류, 데본기탄산염암, 쥬라기 화강암류, 백악기 반암류 및 초염기성맥암으로 구성된다. 시죽일 다금속 광상은 중-조립질 흑운모화강암과 관련되어 있다. 광체의 산출상태, 광물의 산출상태 및 공생관계를 토대로 광화시기는 스카른, 그라이젠 및 열수시기로 나뉜다. 스카른 시기의 광체는 주로 Ca-스카른으로 천리산 화강암체 주변에 발달되며, 석류석, 휘석, 베수비아나이트, 규회석, 각섬석, 형석, 녹염석, 방해석, 회중석, 철망간중석, 휘창연석, 휘수연석, 석석, 자연창연, 미확인 Bi-Te-S계 광물, 자철석 및 적철석 등이 산출된다. 그라이젠 시기는 중-조립질 흑운모화강암의 잔류용액과 관련되며, 광체는 판상 및 맥상으로 구분된다. 이 시기는 주로 석영, 장석, 백운모, 녹니석, 전기석, 황옥, 녹주석, 인회석, 회중석, 철망간중석, 휘수연석, 휘창연석, 석석, 자연창연, 미확인 우라늄광물, 미확인 희토류광물로 구성되고, 소량의 황철석, 자철석, 황동석, 적철석 등이 산출된다. 회중석은 누대조직을 보이며, 중심부에서 MoO$_3$ 함량이 9.17%로 외곽보다 높게 나타난다. 철망간중석의 화학조성은 WO$_3$; 71.20~77.37 wt.%, FeO; 9.37~18.4 wt.%, MnO; 8.17~15.31 wt.% 및 CaO; 0.01~4.82 wt.% 이다. 석석의 FeO 함량은 1.30~4.75 wt.%이고, 스카른 시기가 높은 함량을 보인다. 자연창연의 Te 및 Se 함량은 각각 0.00~1.06 wt.%와 0.00~0.57 wt.%이다. 미확인 Bi-Te-S 계 광물은 Bl: 78.62~80.75 wt.%, Te: 12.26~14.76 wt.%, Cu; 0.00~0.42 wt.%, S; 5.68~6.84 wt.%, Se; 0.44~0.78 wt.%.이다.

동명중석광산산(東明重石鑛山産) 유화광물(硫化鑛物)의 광물학적(鑛物學的) 연구(硏究) (Mineralogical Studies on Sulfide Ore Species of the Tong Myeong Tungsten Deposits)

  • 이평구;소칠섭;김세현;윤성택;김문영
    • 자원환경지질
    • /
    • 제19권spc호
    • /
    • pp.207-226
    • /
    • 1986
  • 스카른형 동명회중석광상(東明灰重石鑛床)은 조선계(朝鮮系) 대석회암통(大石灰岩統)에 대비되는 삼태산층(三台山層)과 이를 관입한 쥬라기 화강섬록암(花崗閃綠岩)과의 접촉대에 발달한 접촉교대광상(接觸交代鑛床)이다. 광화작용(鑛化作用)은 스카른시기 열수시기, 후기열수시기의 3회에 걸쳐 진행되었으며, 접촉부로부터 규회석, 투휘석, 투회석-석류석, 석류석, 베스비아나이트 스카른대(帶)가 불규칙한 대상분포(帶狀分布)한다. 회중석(灰重石)은 규회석스카른을 제외한 모든 스카른대(帶)와 열수시기초기 석영맥(石英脈)에서 산출되며, 특히 자류철석(磁硫鐵石), 방연석(方鉛石), 베스비아나이트와 밀접하게 공생(共生)한다. 즉 자류철석(磁硫鐵石)이 침전되면서 유리되 나온 수소(水素)이온은 모암인 석회암(石灰岩)과 반응(反應), 분리된 Ca이온의 활성도(活性度)가 증가되며 회중석(灰重石)이 침전된 것으로 사료된다. 한편 동명광산산(東明鑛山産) 주(主) 및 부성분(副成分) 유화광물(硫化鑛物)을 대상으로한 물성(物性)실험 연구를 통하여, 광화시기(鑛化時期) 및 광물(鑛物)의 내부반사(內部反射)현상에 따른 반사도(反射度) 미경도(微硬度)의 상관성을 검토하고 광학적(光學的) 대칭성(對稱性)을 연구하여 황동석과 벡철석은 2축성(軸性)(-), 반동석은 2축성(軸性)(+)임을 밝혔으며 유비철석은 2축성(軸性)이나 대칭성(對稱性)을 결정할 수 없었다. 미경도(微硬度)실험에서는 경도(硬度)가 낮은 광물일수록 하중에 따른 미경도(微硬度)값의 변화경향이 적으며, 실험된 광물은 모두 특징적인 indentation을 보여 광물감정에 이용될 수 있을 것으로 고려된다.

  • PDF

함안군북지구(咸安郡北地區)의 지질(地質)과 동광상(銅鑛床) (Geology and Ore Deposits in the Haman-Kunbuk Copper District)

  • 문정욱;김명환;이지헌;최충정
    • 자원환경지질
    • /
    • 제3권2호
    • /
    • pp.55-73
    • /
    • 1970
  • The district investigated covers the central and southern portions of the Uiryong Quadrangle amounting to $40km^2$ in area and is bounded approximately by geographical coordinates of $128^{\circ}$ 28' $40^{{\prime}{\prime}}{\sim}128^{\circ}$ 24' 25"E in longitude and $35^{\circ}10{\prime}{\sim}35^{\circ}14^{\prime}06^{{\prime}{\prime}}N$ in latitude. The purpose of this investigation was to provide basic information in drawing up a comprehensive development plan of the copper ore deposits known to exist in the HamanKumbuk district with special emphasis given to the ascertainment of geological and paragenetic characteristics. The area consists chiefly of shale, sandy shale and chert, all belong to Kyongsang System of Cretaceous age. Intruded into these rocks are andesite, granodiorite, basic dikes, and acidic dikes. The mineralization which took place in the area, consists of mostly fissure-filling vein deposits, numbering several tens, with varying magnitudes. The fissures and shear zones created in rocks, such as chert and granodiorite, hosted the deposition of mineralizing vapors and/or hydrothermal solutions along their openings. The strike lengths of these veins vary from 50 to 600 meters in extension and 0.1 to 3 meters in width. Although the degree of fluctuation in width is great, it averages 0.3m. The stuctural patterns, which apparently affected the deposition of veins, are fissure patterns, trend NS to $N30^{\circ}W$, and steep-pitching tension fractures as well as normal fault pattern. Ore minerals associated with vein matters are primarily chalcopyrite and small amounts of scheelite, cobaltiferous arsenopyrite, and gold and silver intimately associated with sulphide minerals. Associated with these ore mineral are pyrite, pyrrhotite, magnetite, specularite and arsenopyrite. Gangue minerals noted are quartz, calcite, chlorite, tourmaline and hornblende. In terms of the compositions of associated minerals, the vein deposits in the district could be grouped under the following four categories: 1. Pyrrhoitite, Arsenopyrite, Gold and Silver Bearing Copper Vein (Type I) 2. Calcite-Scheelite-Copper Vein (Type II) 3. Magnetite-Pyrite-Copper Vein (Type III) 4. Tourmaline Copper Vein (Type IV) Of the four types, the first and the fourth are presently yielding relatively higher grades: of copper ores and concentrates. The estimated ore reserves total some 222,000 metric tons with the following breakdown in terms of metal contents: Name of Mines Au(g/t) Ag(g/t) Cu(%) Reserves(M/T) Kunbuk 15.92 78.69 6,074 60.498 Cheil Kunbuk - - 1.040 60,847 Haman - - 2.688 101,204 222,549 As rehabilitation of old workings and/or exploration of veins at depth proceed, additional estimation of ore reserves may become apparent and necessary. With regard to the problem of beneficiation and upgrading of low-grade ores in the district, it would be advisable to make decisions on location, treating capacity and mill flowsheet after sufficient amount of exploration is completed as suggested in the report.

  • PDF

우리나라 형석광상(螢石鑛床)의 유체포유물(流體包有物) 연구(硏究) (Fluid Inclusion Studies of the Fluorite Deposits in Korea)

  • 박희인
    • 자원환경지질
    • /
    • 제9권1호
    • /
    • pp.27-43
    • /
    • 1976
  • The flourite in Hwacheon, Hwanggangri and Keumsan district are major fluorite producing areas in Korea. The fluorite deposits of Hwacheon district are wholly fissure filling hydrothermal veins embedded in Precambrian gneiss and schists and Jurassic granites. Also some fluorite deposits are emplaced in felsite whose age is unknown. Emplacement of most fluorite veins of the district are controlled by EW fracture system. Fluorites are generally accompanied to chalcedonic quartz and also kaolinite, montmorillonite, dickite and calcite in parts. Vertical and lateral mineral zonings are not distinct. The fluorite deposits in the Hwanggangri district are wholly embedded in limestone and other calcareous sediments of Paleozoic Yeongweol Group. Most of the fluorite deposits belong to one of two categories which are steeply. dipping veins and gently dipping replacement deposits adjacent to Late Cretaceous(83-90mys) granite bodies. The strikes of fluorite veins of Hwanggangri district mostly occupy the fractures of $N30^{\circ}-40^{\circ}E$ and $N30^{\circ}-40^{\circ}W$ system. Fluorites are accompanied to calcite, milky quartz, chalcedonic quartz, and also montmorillonite, kaolinite in parts. But in some deposits, scheelite, various sulfide minerals and barite are accompanied. Emplacement of fluorite deposits are largely controlled by lithology and structures of this district. In some deposits fluorite veins gradate to scheelite veins and also telescoping of the mineral zones are found in this district. In the Keumsan district, fissure-filled fluorite veins and replacement deposits are mostly emplaced in limestone of Paleozoic Yeongweol Group, late Cretaceous quartz-porphyry, granite and sandstone. Some deposits are emplaced in Precambrian metasediments. Mineralogy and other characteristics of the deposits in this district is similar to those of Hwanggangri district. Fluid inclusion studies reveal the difference of salinities, $CO_2$ contents of ore fluid and temperatures during fluorite mineral deposition in the these districts. In Hwacheon district, ore-fluids were comparatively dilute brine and low $CO_2$ content. Filling temperatures ranges $104^{\circ}C$ to $170^{\circ}C$. In the Chuncheonshinpo mine, most deeply exploited one in this district, salinitles range 0.5-2. 2wt. % NaCl and filling temperatures range from $116^{\circ}C$ to $143^{\circ}C$. In the Hwanggangri district, ore fluids were complex and filling temperature ranges very widly. In the contact metasomatic fluorite deposits, ore fluid were NaCl rich brines with moderate $CO_2$ content and filling temperatures range from $285^{\circ}C$ to above $360^{\circ}C$. Fluids inclusions in tungsten and sulfide minerals bearing fluorite veins show high $CO_2$ content up to 31wt. %. Filling temperature ranges from $101^{\circ}C$ to $310^{\circ}C$. Fluids inclusions In mainly fluorite bearing veins were more dilute brine and low $CO_2$ contents. Filling temperatures range from $95^{\circ}C$ to $312^{\circ}C$. Filling temperature of fluid inclusions of Keumsan district are between $95^{\circ}C$ and $237^{\circ}C$. Data gathered from geologic, mineralogic and fluid inclusion studies reveal that fluorite mineralization in H wacheon district proceeded at low temperature with dilute brine and low $CO_2$ content. In Hwangganri district, fluorite mineralization proceeded by several pulse of chemically distinct ore fluids and formed the mineralogically different type of deposits around cooling granite pluton which emplaced comparatively shallow depth.

  • PDF

상동광상(上東鑛床)의 광물공생(鑛物共生)에 관(關)한 연구(硏究) (Study on Mineral Paragenesis in Sangdong Scheelite Deposit)

  • 문건주
    • 자원환경지질
    • /
    • 제7권2호
    • /
    • pp.45-62
    • /
    • 1974
  • Scheelite deposits in Sangdong mine are divided into three parallel vein groups, namely "Hanging-wall vein" which is located in the lowest parts of Pungchon Limestone, "Main vein" the most productive vein replaced a intercalated limestone bed in Myobong slate, "Foot-wall veins" a group of several thin veins parallel to main vein in Myobong slate. Besides the above, there are many productive quartz veins imbedded in the above veins and Myobong slate. Molybdenite and wolframite are barren in the former three veins group but associates only in quartz veins. Both main vein and foot-wall veins show regular zonal distribution, quartz rich zone in the center, hornblende rich zone surrounding the quartz rich zone and diopside rich zone in the further outside to the marginal parts of the vein. According to the distribution of three main minerals, quartz, hornblende and diopside the main vein can be divided into three zones which are in turn grouped into 7 subzones by distinct mineral paragenesis. They are summerized as follows: A. Diopside rich zone: 1. garnet-diopside.fl.uorite subzone 2. diopside-zoisite-quartz subzone 3. diopside-plagioclase subzone B. Hornblende rich zone: 4. hornblende-diopside-quartz subzone 5. hornblende-quartz-chlorite subzone 6. hornblende-plagioclase-quartz.sphene subzone C. Quartz rich zone: 7. quartz-mica-chlorite subzone The foot-wall veins can similarly be divided by mineral paragenesis into 3 zones, 6 subzones as follows: A. diopside rich zone: 1. garnet-diopside-quartz.fl.uorite subzone 2. garnet-diopside-wollastonite subzone B. Hornblende rich zone: 3. quartz-hornblende-chlorite subzone 4. hornblende-plagioclase-quartz subzone 5. hornblende-diopside-quartz subzone C. Quartz rich zone: 6. quartz-mica subzone The hanging-wall vein is generally grouped into 9 subzones by the mineral paragenesis which show random distribution. They are as follows: 1. diopside-garnet-fluorite subzone 2. diopside-zoisite-quartz subzone 3. diopside-hornblende-quartz-fluorite subzone 4. wollastonite-garnet-diopside subzone 5. hornblende-chlorite-quartz subzone 6. quartz-plagioclase-hornblende-sphene subzone 7. quartz-biotite subzone 8. quartz-calcite subzone 9. calcite-altered minerals subzone Among many composing minerals, garnet specially shows characteristic distribution and optical properties. Anisotropic and euhedral grossularite is generally distributed in the hanging wall vein and lower parts of the main vein, whereas isotropic and anhedral andradite in the upper parts of the main vein. Plagioclase (anorthite) and sphene are distributed ony near the foot-wall side of the aboveveins. wollastonite is a characteristic mineral in upper parts of the hang-wall vein. Molybdenite is distributed in the upper parts of quartz veins and wolframite in lower parts of quartz veins.

  • PDF