• Title/Summary/Keyword: scheduling of traction

Search Result 4, Processing Time 0.023 seconds

Analysis and compensation of the current unbalance considering dynamic characteristic of feeding traction loads (철도 부하의 동적 특성을 고려한 전류 불평형의 분석과 보상)

  • 김기표;김진오
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.54-60
    • /
    • 2003
  • Feeding traction loads from the public power system may lead to some current and voltage unbalance and consequently affects the operation of its energy-supply system and other equipment connected with it. This paper introduces an analysis of the current unbalance caused by the demands of an electric railway on a public power system. And the results with compensator and without compensator are simulated, and eventually the formula about the current unbalance is suggested. The Scott-connected transformer is adopted in Korea National Railway System. So Scott-connected transformer among the various transformer connection schemes is analyzed in this paper. Also, the formulas about the unbalance and compensating current can be derived by using two parameters(M-phase and T-phase current) of secondary Scott-connected transformer. So, the practical and accurate simulation can be done through dynamic models by using scheduling of traction.

SLIP CONTROLLER DESIGN FOR TRACTION CONTROL SYSTEM

  • Jung, H.;Kwak, B.;Park, Y.
    • International Journal of Automotive Technology
    • /
    • v.1 no.1
    • /
    • pp.48-55
    • /
    • 2000
  • Two major roles of the traction control system (TCS) are to guarantee the acceleration performance and directional stability even in extreme road conditions, under which average drivers may not control the car properly. Commercial TCSs use experiential methods such as lookup table and gain-scheduling to achieve proper performance under various road and vehicle conditions. This paper proposes a new slip controller which uses the brake and the throttle actuator simultaneously. To avoid measurement problems and to get a simple structure, the brake controller and the throttle controller are designed using Lyapunov redesign method and multiple sliding mode control respectively. Through the hybrid use of brake and throttle controllers, the vehicle is insensitive to the variation of the vehicle mass, brake gain and road condition and can achieve the required acceleration performance. The proposed method is validated with simulations based on 15 DOF passenger car model.

  • PDF

A Study on Verification of PowerRail based on Voltage Drop under Extended Feeding Condition (연장급전 전압강하 계산을 위한 전기철도 급전 시뮬레이터의 검증에 관한 연구)

  • Kim, Joorak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.331-337
    • /
    • 2015
  • The power flow analysis of electrified railway is required complicated calculation, because of variable load. Train runs trough rail supplied by electric power therefore, the load value in electrified railway system fluctuates along time. The power flow algorithm in electrified railway system is different from general power system, and the power flow simulation is peformed by the particular simulation software. Powerail is simulation software for analysis of traction power supply system developed by KRRI, in 2008. This consists of load forecasting module, including TPS and time scheduling, and power flow module. This software was verified by measured current under normal feeding condition, however, has not been verified by voltage on the condition of extended feeding. This paper presents the verification of PowerRail based on voltage drop under extended feeding condition. This is performed by comparing simulation result with field test. Field test and simulation is done in commercial railway line.

Inband Signaling on the Control Pilot of Electric Vehicle Supply Equipment (전기자동차 충전스탠드의 제어파일럿 신호를 이용한 대역 내 통신 방식)

  • Kim, Chul-Woo;Kim, Sang-Beom;Lim, You-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2019-2020
    • /
    • 2011
  • Electric Vehicle Supply Equipment(EVSE) is a system or an equipment to supply electric power for charging the traction batteries on the electric vehicle. Control Pilot is an electric signal generated by EVSE and is transmitted to the electric vehicle by a vehicle coupler and a contact. The duty cycle of control pilot determines the maximum current to be drawn by electric vehicle. When the duty cycle is 5%, it is indicated that digital communication is needed. This paper deals with the data format and definition about communication scheduling through the inband signal on the control pilot of EVSE.

  • PDF