• Title/Summary/Keyword: scheduling internet

Search Result 401, Processing Time 0.023 seconds

Transient Coordinator: a Collision Resolution Algorithm for Asynchronous MAC Protocols in Wireless Sensor Networks

  • Lee, Sang Hoon;Park, Byung Joon;Choi, Lynn
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3152-3165
    • /
    • 2012
  • Wireless sensor networks (WSN) often employ asynchronous MAC scheduling, which allows each sensor node to wake up independently without synchronizing with its neighbor nodes. However, this asynchronous scheduling may not deal with collisions due to hidden terminals effectively. Although most of the existing asynchronous protocols exploit a random back-off technique to resolve collisions, the random back-off cannot secure a receiver from potentially repetitive collisions and may lead to a substantial increase in the packet latency. In this paper, we propose a new collision resolution algorithm called Transient Coordinator (TC) for asynchronous WSN MAC protocols. TC resolves a collision on demand by ordering senders' transmissions when a receiver detects a collision. To coordinate the transmission sequence both the receiver and the collided senders perform handshaking to collect the information and to derive a collision-free transmission sequence, which enables each sender to exclusively access the channel. According to the simulation results, our scheme can improve the average per-node throughput by up to 19.4% while it also reduces unnecessary energy consumption due to repetitive collisions by as much as 91.1% compared to the conventional asynchronous MAC protocols. This demonstrates that TC is more efficient in terms of performance, resource utilization, and energy compared to the random back-off scheme in dealing with collisions for asynchronous WSN MAC scheduling.

TSCH-Based Scheduling of IEEE 802.15.4e in Coexistence with Interference Network Cluster: A DNN Approach

  • Haque, Md. Niaz Morshedul;Koo, Insoo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.53-63
    • /
    • 2022
  • In the paper, we propose a TSCH-based scheduling scheme for IEEE 802.15.4e, which is able to perform the scheduling of its own network by avoiding collision from interference network cluster (INC). Firstly, we model a bipartite graph structure for presenting the slot-frame (channel-slot assignment) of TSCH. Then, based on the bipartite graph edge weight, we utilize the Hungarian assignment algorithm to implement a scheduling scheme. We have employed two features (maximization and minimization) of the Hungarian-based assignment algorithm, which can perform the assignment in terms of minimizing the throughput of INC and maximizing the throughput of own network. Further, in this work, we called the scheme "dual-stage Hungarian-based assignment algorithm". Furthermore, we also propose deep learning (DL) based deep neural network (DNN)scheme, where the data were generated by the dual-stage Hungarian-based assignment algorithm. The performance of the DNN scheme is evaluated by simulations. The simulation results prove that the proposed DNN scheme providessimilar performance to the dual-stage Hungarian-based assignment algorithm while providing a low execution time.

Hierarchical Resource Management Framework and Multi-hop Task Scheduling Decision for Resource-Constrained VEC Networks

  • Hu, Xi;Zhao, Yicheng;Huang, Yang;Zhu, Chen;Yao, Jun;Fang, Nana
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3638-3657
    • /
    • 2022
  • In urban vehicular edge computing (VEC) environments, one edge server always serves many task requests in its coverage which results in the resource-constrained problem. To resolve the problem and improve system utilization, we first design a general hierarchical resource management framework based on typical VEC network structures. Following the framework, a specific interacting protocol is also designed for our decision algorithm. Secondly, a greedy bidding-based multi-hop task scheduling decision algorithm is proposed to realize effective task scheduling in resource-constrained VEC environments. In this algorithm, the goal of maximizing system utility is modeled as an optimization problem with the constraints of task deadlines and available computing resources. Then, an auction mechanism named greedy bidding is used to match task requests to edge servers in the case of multiple hops to maximize the system utility. Simulation results show that our proposal can maximize the number of tasks served in resource constrained VEC networks and improve the system utility.

MIMO-aided Efficient Communication Resource Scheduling Scheme in VDES

  • Sung, Juhyoung;Cho, Sungyoon;Jeon, Wongi;Park, Kyungwon;Ahn, Sang Jung;Kwon, Kiwon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2736-2750
    • /
    • 2022
  • As demands for the maritime communications increase, a variety of functions and information are required to exchange via elements of maritime systems, which leads communication traffic increases in maritime frequency bands, especially in VHF (Very High Frequency) band. Thus, effective resource management is crucial to the future maritime communication systems not only to the typical terrestrial communication systems. VHF data exchange system (VDES) enables to utilize more flexible configuration according to the communication condition. This paper focuses on the VDES communication system among VDES terminals such as shore stations, ship stations and aids to navigation (AtoN) to address efficient resource allocation. We propose a resource management method considering a MIMO (Multiple Input Multiple Output) technique in VDES, which has been widely used for modern terrestrial wireless networks but not for marine environments by scheduling the essential communication resources. We introduce the general channel model in marine environment and give two metrics, spectral and the energy efficiencies to examine our resource scheduling algorithm. Based on the simulation results and analysis, the proposed method provides a possibility to enhance spectral and energy efficiencies. Additionally, we present a trade-off relationship between spectral and energy efficiencies. Furthermore, we examine the resource efficiencies related to the imperfect channel estimation.

A Novel and Effective University Course Scheduler Using Adaptive Parallel Tabu Search and Simulated Annealing

  • Xiaorui Shao;Su Yeon Lee;Chang Soo Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.843-859
    • /
    • 2024
  • The university course scheduling problem (UCSP) aims at optimally arranging courses to corresponding rooms, faculties, students, and timeslots with constraints. Previously, the university staff solved this thorny problem by hand, which is very time-consuming and makes it easy to fall into chaos. Even some meta-heuristic algorithms are proposed to solve UCSP automatically, while most only utilize one single algorithm, so the scheduling results still need improvement. Besides, they lack an in-depth analysis of the inner algorithms. Therefore, this paper presents a novel and practical approach based on Tabu search and simulated annealing algorithms for solving USCP. Firstly, the initial solution of the UCSP instance is generated by one construction heuristic algorithm, the first fit algorithm. Secondly, we defined one union move selector to control the moves and provide diverse solutions from initial solutions, consisting of two changing move selectors. Thirdly, Tabu search and simulated annealing (SA) are combined to filter out unacceptable moves in a parallel mode. Then, the acceptable moves are selected by one adaptive decision algorithm, which is used as the next step to construct the final solving path. Benefits from the excellent design of the union move selector, parallel tabu search and SA, and adaptive decision algorithm, the proposed method could effectively solve UCSP since it fully uses Tabu and SA. We designed and tested the proposed algorithm in one real-world (PKNU-UCSP) and ten random UCSP instances. The experimental results confirmed its effectiveness. Besides, the in-depth analysis confirmed each component's effectiveness for solving UCSP.

Performance of DCTCP with per-packet scheduling in data center networks (데이터센터 네트워크의 패킷단위 스케줄링에서의 DCTCP 성능)

  • Lim, Chansook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.15-21
    • /
    • 2018
  • Per-packet scheduling is more suitable than per-flow scheduling to reduce the flow completion time by efficiently utilizing resources in data center networks. Recently, many per-packet scheduling schemes utilizing multiple paths have been proposed. However, to mitigate the negative effect of packet reordering on TCP performance, most of the schemes require supplemental measures such as putting packets in order at the lower layer. In this study, we investigate how well DCTCP, which is a representative TCP for data center networks, performs with per-packet scheduling through simulation. Simulation results show that DCTCP keeps the queue length short but that DCTCP shows low fairness due to the way of reducing the congestion window by ECN.

Parallel task scheduling under multi-Clouds

  • Hao, Yongsheng;Xia, Mandan;Wen, Na;Hou, Rongtao;Deng, Hua;Wang, Lina;Wang, Qin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.39-60
    • /
    • 2017
  • In the Cloud, for the scheduling of parallel jobs, there are many tasks in a job and those tasks are executed concurrently on different VMs (Visual machines), where each task of the job will be executed synchronously. The goal of scheduling is to reduce the execution time and to keep the fairness between jobs to prevent some jobs from waiting more time than others. We propose a Cloud model which has multiple Clouds, and under this model, jobs are in different lists according to the waiting time of the jobs and every job has different parallelism. At the same time, a new method-ZOMT (the scheduling parallel tasks based on ZERO-ONE scheduling with multiple targets) is proposed to solve the problem of scheduling parallel jobs in the Cloud. Simulations of ZOMT, AFCFS (Adapted First Come First Served), LJFS (Largest Job First Served) and Fair are executed to test the performance of those methods. Metrics about the waiting time, and response time are used to test the performance of ZOMT. The simulation results have shown that ZOMT not only reduces waiting time and response time, but also provides fairness to jobs.

Efficient Data Scheduling considering number of Spatial query of Client in Wireless Broadcast Environments (무선방송환경에서 클라이언트의 공간질의 수를 고려한 효율적인 데이터 스케줄링)

  • Song, Doohee;Park, Kwangjin
    • Journal of Internet Computing and Services
    • /
    • v.15 no.2
    • /
    • pp.33-39
    • /
    • 2014
  • How to transfer spatial data from server to client in wireless broadcasting environment is shown as following: A server arranges data information that client wants and transfers data by one-dimensional array for broadcasting cycle. Client listens data transferred by the server and returns resulted value only to server. Recently number of users using location-based services is increasing alongside number of objects, and data volume is changing into large amount. Large volume of data in wireless broadcasting environment may increase query time of client. Therefore, we propose Client based Data Scheduling (CDS) for efficient data scheduling in wireless broadcasting environment. CDS divides map and then calculates total sum of objects for each grid by considering number of objects and data size within divided grids. It carries out data scheduling by applying hot-cold method considering total data size of objects for each grid and number of client. It's proved that CDS reduces average query processing time for client compared to existing method.

A Cloud-Edge Collaborative Computing Task Scheduling and Resource Allocation Algorithm for Energy Internet Environment

  • Song, Xin;Wang, Yue;Xie, Zhigang;Xia, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2282-2303
    • /
    • 2021
  • To solve the problems of heavy computing load and system transmission pressure in energy internet (EI), we establish a three-tier cloud-edge integrated EI network based on a cloud-edge collaborative computing to achieve the tradeoff between energy consumption and the system delay. A joint optimization problem for resource allocation and task offloading in the threetier cloud-edge integrated EI network is formulated to minimize the total system cost under the constraints of the task scheduling binary variables of each sensor node, the maximum uplink transmit power of each sensor node, the limited computation capability of the sensor node and the maximum computation resource of each edge server, which is a Mixed Integer Non-linear Programming (MINLP) problem. To solve the problem, we propose a joint task offloading and resource allocation algorithm (JTOARA), which is decomposed into three subproblems including the uplink transmission power allocation sub-problem, the computation resource allocation sub-problem, and the offloading scheme selection subproblem. Then, the power allocation of each sensor node is achieved by bisection search algorithm, which has a fast convergence. While the computation resource allocation is derived by line optimization method and convex optimization theory. Finally, to achieve the optimal task offloading, we propose a cloud-edge collaborative computation offloading schemes based on game theory and prove the existence of Nash Equilibrium. The simulation results demonstrate that our proposed algorithm can improve output performance as comparing with the conventional algorithms, and its performance is close to the that of the enumerative algorithm.

An Iterative Data-Flow Optimal Scheduling Algorithm based on Genetic Algorithm for High-Performance Multiprocessor (고성능 멀티프로세서를 위한 유전 알고리즘 기반의 반복 데이터흐름 최적화 스케줄링 알고리즘)

  • Chang, Jeong-Uk;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.115-121
    • /
    • 2015
  • In this paper, we proposed an iterative data-flow optimal scheduling algorithm based on genetic algorithm for high-performance multiprocessor. The basic hardware model can be extended to include detailed features of the multiprocessor architecture. This is illustrated by implementing a hardware model that requires routing the data transfers over a communication network with a limited capacity. The scheduling method consists of three layers. In the top layer a genetic algorithm takes care of the optimization. It generates different permutations of operations, that are passed on to the middle layer. The global scheduling makes the main scheduling decisions based on a permutation of operations. Details of the hardware model are not considered in this layer. This is done in the bottom layer by the black-box scheduling. It completes the scheduling of an operation and ensures that the detailed hardware model is obeyed. Both scheduling method can insert cycles in the schedule to ensure that a valid schedule is always found quickly. In order to test the performance of the scheduling method, the results of benchmark of the five filters show that the scheduling method is able to find good quality schedules in reasonable time.