• 제목/요약/키워드: scattering particles

검색결과 301건 처리시간 0.026초

Fabrication of Double-Doped Magnetic Silica Nanospheres and Deposition of Thin Gold Layer

  • Park, Sang-Eun;Lee, Jea-Won;Haam, Seung-Joo;Lee, Sang-Wha
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권4호
    • /
    • pp.869-872
    • /
    • 2009
  • Double-doped magnetic particles that incorporated magnetites into both the surface and inside the silica cores were fabricated via the sol-gel reaction of citrate-stabilized magnetites with silicon alkoxide. Double-doped magnetic particles were easily fabricated and exhibited an higher magnetism in comparison to the singledoped magnetic particles that were prepared by the erosion of surface-deposited magneties from double-doped magentic particles. Thin gold layer was formed over magnetic silica nanospheres via nanoseed-mediated growth of gold clusters. The plasmon-derived absorption bands of double-doped magnetic silica-gold nanoshells were more broadened and shifted down by ca. 20 nm as compared to those of single-doped magnetic silicagold nanoshells, which were attributed to not only the surface scattering of incident light due to relatively rough surafce morphology, but also heterogeneous permittivity of dielectric cores due to surface-deposited magnetites.

PLA법에 의한 Si 미립자 제작 (Fabrication of various Si particle by Pulsed Laser Ablation)

  • 김민성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.121-125
    • /
    • 2001
  • We study the feasibility of synthesizing Si particles using PLA method. In the previous studies, it was possible to control the size of Si nanoparticles bythe He gas pressure. In this study, we fabricated sub-micron size Si particles with various shapes such as conical, hexagonal, and ring by controlling not only the ambient as pressure but also the laser energy density. Furthermore, we found that the conical Si particles were uniform-sized and had step shape when observed from FE-SEM and AFM. The conical Si particle has the same crystal structure as the bulk single crystalline Si by the analysis of the Raman scattering. It is shown that the relationship between the laser energy density and the He gas pressure inside the chamber affects the shape of the Si particle.

  • PDF

Size-segregated Allergenic Particles Released from Airborne Cryptomeria japonica Pollen Grains during the Yellow Sand Events within the Pollen Scattering Seasons

  • Wang, Qingyue;Gong, Xiumin;Suzuki, Miho;Lu, Senlin;Sekiguchi, Kazuhiko;Nakajima, Daisuke;Miwa, Makoto
    • Asian Journal of Atmospheric Environment
    • /
    • 제7권4호
    • /
    • pp.191-198
    • /
    • 2013
  • Cryptomeria japonica pollen is the most common pollen, which are scattering during each spring season in Japan. Japanese cedar (Cryptomeria japonica) pollinosis is one of seasonal allergic rhinitis that mainly occurs in Japan. In addition, long range transportation of Yellow Sand from the East Asian continent was also found during the pollen scattering seasons in Japan. Therefore, the interaction or impact between pollen and Yellow Sand should be concerned. In this study, our objective was to investigate the airborne behaviour of Cryptomeria japonica pollen grains and its size-segregated allergenic (Cry j 1) particles as the airborne tracer of Cryptomeria japonica pollen during the Yellow Sand events. Airborne Cryptomeria japonica pollen grains and its size-segregated allergenic particles were collected at roadside of urban residential zones of Saitama city during the pollination periods from February to March in two year investigation of 2009 and 2010. The overlap of Yellow Sand events and dispersal peak of pollen grains was observed. According to the Meteorological data, we found that the peaks of airborne pollen grains appeared under higher wind speed and temperature than the previous day. It was thought that Yellow Sand events and airborne pollen counts were related to wind speed. From the investigation of the airborne behavior of the size-segregated allergen particles by determining Cry j 1 with Surface Plasmon Resonance (SPR), the higher concentrations of the allergenic Cry j 1 were detected in particle size equal to or less than $1.1{\mu}m$($PM_{1.1}$) than other particle sizes during Yellow Sand events, especially in the rainy day. We conclude that rainwater trapping Yellow Sand is one of the important factors that affect the release of allergenic pollen species of Cry j 1. Therefore, it is very important to clarify the relationships between Cryptomeria japonica pollen allergenic species and chemical contents of the Yellow Sand particles in further studies.

[Retraction]Size measurement and characterization of ceria nanoparticles using asymmetrical flow field-flow fractionation (AsFlFFF)

  • Kim, Kihyun;Choi, Seong-Ho;Lee, Seungho;Kim, Woonjung
    • 분석과학
    • /
    • 제32권5호
    • /
    • pp.173-184
    • /
    • 2019
  • As the size of semiconductors becomes smaller, it is necessary to perform high precision polishing of nanoscale. Ceria, which is generally used as an abrasive, is widely used because of its uniform quality, but its stability is not high because it has a high molecular weight and causes agglomeration and rapid precipitation. Such agglomeration and precipitation causes scratches in the polishing process. Therefore, it is important to accurately analyze the size distribution of ceria particles. In this study, a study was conducted to select dispersants useful for preventing coagulation and sedimentation of ceria. First, a dispersant was synthesized and a ceria slurry was prepared. The defoamer selection experiment was performed in order to remove the air bubbles which may occur in the production of ceria slurry. Dynamic light scattering (DLS) and asymmetrical flow field-flow fractionation (AsFlFFF) were used to determine the size distribution of ceria particles in the slurry. AsFlFFF is a technique for separating nanoparticles based on sequential elution of samples as in chromatography, and is a useful technique for determining the particle size distribution of nanoparticle samples. AsFlFFF was able to confirm the presence of a little quantities of large particles in the vicinity of 300 nm, which DLS can not detect, besides the main distribution in the range of 60-80 nm. AsFlFFF showed better accuracy and precision than DLS for particle size analysis of a little quantities of large particles such as ceria slurry treated in this study.

Solution-processible corrugated structure and scattering layer for enhanced light extraction from organic light-emitting diodes

  • Hyun, Woo Jin;Im, Sang Hyuk;Park, O Ok;Chin, Byung Doo
    • Journal of Information Display
    • /
    • 제13권4호
    • /
    • pp.151-157
    • /
    • 2012
  • A simple method of fabricating out-coupling structures was demonstrated via solution-processing to enhance light extraction from organic light-emitting diodes (OLEDs). Scattering layers were easily obtained by spin-coating an $SiO_2$ sol solution that contained $TiO_2$ particles. By introducing the scattering layer and the solution-processible corrugated structure as internal and external extraction layers, the OLEDs showed increased external quantum efficiency without a change in the electroluminescence spectrum compared to conventional devices. Using these solution-processible out-coupling structures, nearly all-solution-processed OLEDs with enhanced light extraction could be fabricated. The light extraction enhancement is attributed to the suppression by the out-coupling structures of the light-trapping that arose at the interface of the glass substrate and the air.

N-propyl-N,N-dimethylethanolamine의 Phantom에서 Laser Induced Fluorescence의 스펙트라에 관한 연구 (A Study on Spectra of Laser Induced Flourescence in Phantom of N-propyl-N,N-dimethylethanolamine)

  • 김기준;이주호;이주엽;성완모
    • 한국응용과학기술학회지
    • /
    • 제32권2호
    • /
    • pp.330-338
    • /
    • 2015
  • N-propyl-N,N-dimethylethanolamine의 산란혼탁매질에서 형광, 산란과 응집의 영향은 파장 과 산란된 형광세기로 나타내는데, laser induced fluorescence(LIF) 분광학에 의한 분자특성으로 나타난다. 산란매질에서 광학적 효과는 광학적 파라미터들(${\mu}_s$, ${\mu}_a$, ${\mu}_t$)에 의해 표현되고 응집은 고-액상 분리 공정에서 중요하게 활용되고 있다. 따라서 입자가 서로 접근될 때 콜로이드 입자들의 상호작용을 LIF와 응집효과로 분석하였다. Monte Carlo simuation과 실험으로 레이저 광원에서 검출기까지 거리의 함수에 의해 농도가 묽어짐에 따라 산란세기가 기하급수적으로 감소함을 알 수 있었다. 이는 유지화학, 생의학, 레이저 의학, 의공학 분야적용에 LIF와 입자이동 현상은 아주 적합한 모델 연구에 큰 도움이 될 것이다.

화학겔 안에서의 라텍스 입자의 거동에 관한 연구 (Latex Particles's Behavior in Chemically Cross-Linked Gels)

  • 장경호;손대원
    • 대한화학회지
    • /
    • 제42권2호
    • /
    • pp.156-160
    • /
    • 1998
  • 화학겔로써 대표적인 실리카겔과 아마이드겔의 겔화(gelation)과정을 살펴보고 라텍스 입자를 추적자로 사용하는 광산란 실험을 통해 이들의 구조와 화학적 성질을 고찰하여 보았다. 표준입자(standard particle)로 쓰이는 라텍스 입자를 추적자로 사용하여 입자들의 병진운동(translational diffusion)을 고려함으로서 겔의 내부공간크기를 확인하고 겔과 입자표면과의 화학적 상호작용을 고려하였다. 실리카겔은 아마이드 겔보다 규칙적인 겔구조를 나타내는 것으로 사료되며 표면이 카르복실기를 갖는 입자는 실리카 겔과 엉킴(aggregation)현상을 나타냄을 관측하였다. 불균일(heterogeneity)한 겔의 고조확인을 위한 광산란법을 비에르고딕(non-ergodic)이론에 기초한 통계적인 방법을 통해 접근하였다.

  • PDF

A NUMERICAL METHOD TO ANALYZE GEOMETRIC FACTORS OF A SPACE PARTICLE DETECTOR RELATIVE TO OMNIDIRECTIONAL PROTON AND ELECTRON FLUXES

  • Pak, Sungmin;Shin, Yuchul;Woo, Ju;Seon, Jongho
    • 천문학회지
    • /
    • 제51권4호
    • /
    • pp.111-117
    • /
    • 2018
  • A numerical method is proposed to calculate the response of detectors measuring particle energies from incident isotropic fluxes of electrons and positive ions. The isotropic flux is generated by injecting particles moving radially inward on a hypothetical, spherical surface encompassing the detectors. A geometric projection of the field-of-view from the detectors onto the spherical surface allows for the identification of initial positions and momenta corresponding to the clear field-of-view of the detectors. The contamination of detector responses by particles penetrating through, or scattering off, the structure is also similarly identified by tracing the initial positions and momenta of the detected particles. The relative contribution from the contaminating particles is calculated using GEANT4 to obtain the geometric factor of the instrument as a function of the energy. This calculation clearly shows that the geometric factor is a strong function of incident particle energies. The current investigation provides a simple and decisive method to analyze the instrument geometric factor, which is a complicated function of contributions from the anticipated field-of-view particles, together with penetrating or scattered particles.