• Title/Summary/Keyword: scattering film

Search Result 299, Processing Time 0.03 seconds

Fabrication of Highly Efficient Nanocrystalline Silicon Thin-Film Solar Cells Using Flexible Substrates (유연기판을 이용한 고효율 나노결정질 실리콘 박막 태양전지 제조)

  • Jang, Eunseok;Kim, Sol Ji;Lee, Ji Eun;Ahn, Seung Kyu;Park, Joo Hyung;Cho, Jun-Sik
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.103-109
    • /
    • 2014
  • Highly efficient hydrogenated nanocrystalline silicon (nc-Si:H) thin-film solar cells were prepared on flexible stainless steel substrates using plasma-enhanced chemical vapor deposition. To enhance the performance of solar cells, material properties of back reflectors, n-doped seed layers and wide bandgap nc-SiC:H window layers were optimized. The light scattering efficiency of Ag back reflectors was improved by increasing the surface roughness of the films deposited at elevated substrate temperatures. Using the n-doped seed layers with high crystallinity, the initial crystal growth of intrinsic nc-Si:H absorber layers was improved, resulting in the elimination of the defect-dense amorphous regions at the n/i interfaces. The nc-SiC:H window layers with high bandgap over 2.2 eV were deposited under high hydrogen dilution conditions. The vertical current flow of the films was enhanced by the formation of Si nanocrystallites in the amorphous SiC:H matrix. Under optimized conditions, a high conversion efficiency of 9.13% ($V_{oc}=0.52$, $J_{sc}=25.45mA/cm^2$, FF = 0.69) was achieved for the flexible nc-Si:H thin-film solar cells.

Manufacturing and Characteristics of Biodegradable Materials Based on Starch-Citric Acid for Anti-Particulate Scattering (전분-구연산을 기반으로 한 생분해성 비산방지용 소재의 제조 및 특성 분석)

  • Lee, Ji Sung;Lee, Won Gyu
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.443-449
    • /
    • 2021
  • A biodegradable shatterproof thin film material having excellent water resistance and applicability was prepared by crosslinking through esterification of starch and citric acid. In order to improve the thin film formation and physical properties of these materials, PVA and glycerin were added to secure the flexibility of the applied thin film. In addition, conditions for optimizing material functionality such as swelling degree and solubility in water according to reaction time, temperature, and concentrations of raw materials and additives were analyzed. The crosslinking reaction of starch and citric acid was confirmed by FT-IR analysis, and it was found that single and multiple esterification reactions occurred simultaneously in these reaction processes. It can be seen that the crosslinked starch-citric acid thin film material was decomposed about 95% after 12 weeks after landfilling, and thus biodegradability was excellent.

Relationship between Film Density and Electrical Properties on D.C. Magnetron Reactive Sputtered Sn-doped ${In_2}{O_3}$Films (D.C. 마그네트론 반응성 스퍼터링법에 의한 Sn-doped ${In_2}{O_3}$ 박막의 밀도와 전기적 특성과의 관계)

  • 이정일;최시경
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.686-692
    • /
    • 2000
  • Tin-doped In2O3 (ITO) films were fabricated using a d.c. magnetron reactive sputteirng of a In-10 wt% Sn alloy target in an Ar and O2 gas mixture. To understand the behavior of the carrier mobility in ITO films with O2 partial pressure, the resistivity, carrier concentration and mobility, film density, and intrinsic stress in the films were measured with O2 partial pressure. It was found experimentally that the carrier mobility increased rapidly as the film density increased. In the ITO film with the density close to theoretical one, the mean free path was the same as the columnar diameter. This indicated that the mobility in ITO films was strongly influenced by the crystall size. However, in the case where the film density was smaller than a theoretical density, the mean free paths were also smaller the columnar diameter. It was analyzed that the electron scattering at pores and holes within the crystalline was the major obstacle for electron conduction in ITO films. The measurement of intrinsic stress in ITO films also made it clear that the density of ITO films was controlled by the bombardment of oxygen neutrals on the growing film.

  • PDF

SUPPRESSION OF THE TETRAGONAL DISTORTION IN THIN Pb(Zr, Ti)$O_3$/MgO(100)

  • Kang, H.C.;Noh, D.Y.;Je, J.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.141-153
    • /
    • 1997
  • The paraelectric cubic-to-ferroelectric tetragonal phase transition of the thin Pb(Zr, Ti)$O_3$ (PZT) films grown on MgO(001) substrate was investigated in a series of synchrotron x-ray scattering experiments. As the thickness of the film decreases the transition temperature and the amount of the tetragonal distortion were decreased continuously Different from only the c-domains were existent in the thinnest 25nm thick film. Based on this we propose a model for the domain structure of the tetragonal PZT/MgO(100) film that is very different from the ones suggested in literature. We attribute the suppression of the transition to the substrate field that prefers the c-type domains near the interface and suppresses the tetragonal distortion to minimize the film-substrate lattice mismatch.

  • PDF

$\gamma$-선 Radiography에 있어서의 피사체 산란선에 관한 연구

  • 허남;야고이명
    • Nuclear Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.223-228
    • /
    • 1972
  • In the radiography, of thick materials the scattered rays from an object are one of major causes to reduce the quality of the radiographic image on the film. To determine the rate of scattering of incident gamma rays by an objective specimen, film blacknesses are measured for various slit widths. For each measurement, the changes of a penetrameter's sensitivity are also evaluated. It is observed that the fault-detectability can be improved by reducing the slit width when the fault detectability deteriorates due to the increase in scattered gamma rays by thicker samples. This experiment has been carried out with the iron specimens and $^{60}$ Co source.

  • PDF

Crystal Structure Refinement of $SnO_{2}$ Thin Film Using X-ray Scattering (X-선 산란을 이용한$SnO_{2}$ 박막의 결정구조 정밀화)

  • Kim, Yong-Il;Nam, Seung-Hoon;Park, Jong-Seo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1939-1943
    • /
    • 2003
  • The precise structural analysis of $SnO_{2}$ thin film, which was prepared by PECVD and thickness 2400 ${\AA}$, was tried to do the structural refinement using X -ray diffraction data. The observed diffraction patterns of $SnO_{2}$ thin film had the strongly preferred orientation effect. WIMV method was used to correct the preferred orientation effect. The final weighted R-factor, $R_{WD}$ was 7.92 %. The lattice parameters, a = b == 4.7366(1) ${\AA}$ and c = 3.1937(1) ${\AA}$, were almost in accordance with ones of $SnO_{2}$ powder.

  • PDF

Assembly of Gold Nanoparticles on Electrospun Polymer Nanofiber Film for SERS Applications

  • Wang, Li;Sun, Yujing;Wang, Jiku;Li, Zhuang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.30-34
    • /
    • 2014
  • We report a novel approach for fabricating active surface-enhanced Raman scattering (SERS) substrate for sensitive detection. This approach is based on the assembling of gold nanoparticles (AuNPs) onto the electrospun polycaprolactone (PCL) nanofiber film. The hydrophobic surface of PCL nanofiber film was pretreated using UV-inducing graft polymerization with acrylic acid. Afterwards this PCL nanofiber film was incubated with the AuNP solution to promote the assembly of AuNPs onto the PCL nanofibers and the formation of SERS active substrate. 4-aminothiophenol (4-ATP) molecule was used as a test probe for SERS experiments, indicating that the substrate has high sensitivity to SERS response. Our method has great advantage in term of environment-friendly synthesis, large-scale, high stability and good reproducibility. This highly active SERS substrate can be employed to detect the drug molecule, 2-thiouracil.

Resonance Characteristics of THz Metamaterials Based on a Drude Metal with Finite Permittivity

  • Jun, Seung Won;Ahn, Yeong Hwan
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.378-382
    • /
    • 2018
  • In most previous investigations of plasmonic and metamaterial applications, the metallic film has been regarded as a perfect electrical conductor. Here we demonstrate the resonance characteristics of THz metamaterials fabricated from metal film that has a finite dielectric constant, using finite-difference time-domain simulations. We found strong redshift and spectral broadening of the resonance as we decrease the metal's plasma frequency in the Drude free-electron model. The frequency shift can be attributed to the effective thinning of the metal film, originating from the increase in penetration depth as the plasma frequency decreases. On the contrary, only peak broadening occurs with an increase in the scattering rate. The metal-thickness dependence confirms that the redshift and spectral broadening occur when the effective metal thickness drops below the skin-depth limit. The electromagnetic field distribution illustrates the reduced field enhancement and reduced funneling effects near the gap area in the case of low plasma frequency, which is associated with reduced charge density in the metal film.