• Title/Summary/Keyword: scattering film

Search Result 299, Processing Time 0.029 seconds

Excess proton catalyzed H/D exchange reaction at the ice surface

  • Moon, Eui-Seong;Kang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.333-333
    • /
    • 2011
  • We studied the H/D exchange kinetics of pure and acid dopped water-ice film by using the techniques of reactive ions scattering (RIS) and low energy sputtering (LES) with low kinetic energy cesium ion beam (<35 eV). From RIS, neutral water isotopomers were detected in the form of cesium-molecule ion clusters, $CsX^+$ (X= $H_2O$, HDO, $D_2O$). Ionic species, like $H_3O^+$, $DH_2O^+$, $D_2HO^+$, $D_3O^+$, adsorbed on the surface were ejected via LES process. Those techniques allowed us to trace the isotopomeric populations of water-ice film. To show the catalytic effect of excess proton in the H/D exchange reaction, our study was conducted with two types of water-ice films. In film 1, about 0.5 BL of $H_2O$ was adsorbed on HCl (0.1 ML) dopped $D_2O$ (8 BL) film. In film 2, similar amount of $H_2O$ used in film 1 was adsorbed on pure $D_2O$ film. Kinetic data were obtained from each film type for 90-110 K (film 1) and 110-130 K (film 2) and fitted with numerically integrated lines. Through the Arrhenius plot of kinetic coefficient deduced from fitting of the H/D exchange reaction, the activation energy of film 1 and 2 were estimated to be $10{\pm}3kJmol^{-1}$ and $17{\pm}4kJmol^{-1}$. This activation barrier difference could be understood from detailed pictures of H/D exchange. In film 2, both the formation of ion pair, $H_3O^+$ and OH. and proton transfer were needed for the H/D exchange. However, in film 1, only proton transfer was necessary but ion pair formation was not, so this might reduce the activation energy.

  • PDF

Nonhomogeneity of the Electrical Properties with Deposition Position in an ITO Thin Film Deposited under a Given R.F. Magnetron Sputtering Condition (동일 증착 조건의 스퍼터링에 의해서 제작된 Indium Tin 산화물 박막의 증착위치에 따른 전기적 특성의 불균질성)

  • 유동주;최시경
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.973-979
    • /
    • 2001
  • Tin-doped indium oxide (ITO) thin films were deposited using r.f. magnetron reactive sputtering and the electrical properties, such as the resistivity, carrier concentration and mobility, were investigated as a function of the sample position under a given magnetron sputtering condition. The nonhomogeneity of the electrical properties with the sample position was observed under a given magnetron sputtering condition. The resistivity of ITO thin film on the substrate which corresponded to the center of the target had a minimum value, 2∼4$\times$10$\^$-4/$\Omega$$.$cm, and it increased symmetrically when the substrate deviated from the center. The density measurement result also showed that ITO thin film deposited at the center has a maximum density of 7.0g/cm$^3$, which was a relative density of about 97%, and the density decreased symmetrically as the substrate deviated from the center. The nonhomogeneity of electrical properties with the deposition position could be explained with the incidence angle of the source beam alpha, which is related with an atomic self-shadowing effect. It was confirmed experimentally that the density in film affect both the carrier mobility and the conductivity. In the case where the density of ITO thin film is 7.0g/cm$^3$, the magnitude of the mean free path was identical with that of the grain size(the diameter of column). However, in the other cases, the mean free path was smaller than the grain size. These results showed that the scattering of the free electrons at the grain boundary is the major factor for the electrical conduction in ITO thin films having a high density, and there exists other scattering sources such as vacancies, holes, or pores in ITO thin films having a low density.ing a low density.

  • PDF

A MEIS Study on Ge Eppitaxial Growth on Si(001) with dynamically supplied Atomic Hydrogen

  • Ha, Yong-Ho;Kahng, Se-Jong;Kim, Se-Hun;Kuk, Young;Kim, Hyung-Kyung;Moon, Dae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.156-157
    • /
    • 1998
  • It is a diffcult and challenging pproblem to control the growth of eppitaxial films. Heteroeppitaxy is esppecially idfficult because of the lattice mismatch between sub-strate and depposited layers. This mismatch leads usually to a three dimensional(3D) island growth. But the use of surfactants such as As, Sb, and Bi can be beneficial in obtaining high quality heteroeppitaxial films. In this study medium energy ion scattering sppectroscoppy(MEIS) was used in order to reveal the growth mode of Ge on Si(001) and the strain of depposited film without and with dynamically supplied atomic hydrogen at the growth thempperature of 35$0^{\circ}C$. It was ppossible to control the growth mode from layer-by-layer followed by 3D island to layer-by-layer by controlling the hydrogen flux. In the absent of hydro-gen the film grows in the layer-by-layer mode within the critical thickness(about 3ML) and the 3D island formation is followed(Fig1). The 3D island formation is suppressed by introducing hydrogen resulting in layer-by-layer growth beyond the critical thickness(Fig2) We measured angular shift of blocking dipp in order to obtain the structural information on the thin films. In the ppressence of atomic hydrogen the blocking 야 is shifted toward higher scattering angle about 1。. That means the film is distorted tetragonally and strained therefore(Fig4) In other case the shift of blocking dipp at 3ML is almost same as pprevious case. But above the critical thickness the pposition of blocking dipp is similar to that of Si bulk(Fig3). It means the films is relaxed from the first layer. There is 4.2% lattice mismatch between Ge and Si. That mismatch results in about 2。 shift of blocking dipp. We measured about 1。 shift. This fact could be due to the intermixing of Ge and Si. This expperimental results are consistent with Vegard's law which says that the lattice constant of alloys is linear combination of the lattic constants of the ppure materials.

  • PDF

Study on the Improvement of Light Transmittance of Polyester Film (폴리에스터 필름의 광투과도 향상에 대한 연구)

  • Kim, Si-Min;Park, Soo-Young
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.662-667
    • /
    • 2012
  • Poly(ethylene terephthalate) (PET) base films with high light transmittance have been used for the substrate of various functional films in the flat panel display. The effects of the reflective index of coated films, the roughness of the film surface and the content of inorganic silica particles on the light transmittance were studied in this article. Light transmittance was increased by coating a water soluble resin with a low reflective index at an optimum thickness. The roughness of the film did not affect light transmittance when the Ra of the film surface was less than a quarter of the wavelength of incident light. Inorganic silica particles decreased light transmittance due to their absorbance and scattering of the incident light.

Crystallization of FePt/MgO(100) magnetic thin films (FePt/MgO(100) 자성박막의 결정화 연구)

  • Jeung, Ji-Wook;Cho, Tae-Sik;Yi, Min-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.278-279
    • /
    • 2005
  • The crystallization of FePt/MgO(100) magnetic thin films of various thicknesses has been studied using synchrotron x-ray scattering, atomic force microscope, and vibrating sample magnetometer. In film with a 500-${\AA}$-thick, ordered (fct) FePt phase was dominantly crystallized into perpendicular (001) grains keeping the magnetically easy c-axis normal to the film plane during annealing. In film with a 812-${\AA}$-thick, however, longitudinal (110) grains keeping the c-axis parallel to the film plane were grown on top of the perpendicular (001) grains. The behavior of the magnetic properties was consistent with the thickness dependence of the crystallization. We attribute the thickness dependence of the crystallization to the substrate effect, which prefers the growth of the c-axis oriented perpendicular grains near the film/substrate interfacial area.

  • PDF

Image storage & display using transparent 7/65/35 PLZT ceramics (투명 7/65/35 PLZT 세라믹을 이용한 Image Storage & Display에 관한 연구)

  • Lee, Kae-Myeng;Yoo, Ju-Hyun;Wee, Kyu-Jin;Jeong, Ik-Che;Park, Chang-Yup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.05a
    • /
    • pp.13-16
    • /
    • 1988
  • In this paper, image storage and display of scattering mode using 7/65/35 PLZT ceramics was studied. Scattering in a ferroelectric poly-crystal depends on its grain size and domain orientations. 7/65/35 PLZT ceramics is ferroelectric and transparent. Image can be stored in the ceramic substrate by poling it selectively through a pair of electrodes with the pattern or a set of a photoconductivity film and two transparent electrodes.

  • PDF

Reactive Ion Scattering Study of Ice Surfaces. Proton Transfer and H/D Exchange Reactions

  • Mun, Ui-Seong;Kim, Su-Yeon;Gang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.64-64
    • /
    • 2010
  • Ice film surfaces were examined by using the reactive ion scattering (RIS) of low energy (<35 eV) cesium ion beams. Neutral molecules (X) on the surface were detected in the form of cesium-molecule ion clusters (CsX+). Ionic species on the surface were desorbed from the surface via a low energy sputtering (LES) process below the threshold energy of secondary ion emission. The RIS and LES methods allowed us to study the H/D exchange reactions between H2O and D2O molecules on the surface and the associated proton transfer mechanisms. Specifically, H/D exchange kinetics was examined for D2O ice films (~10 BL) covered with a small amount of H2O (<0.5 BL), in the presence or absence of HCl adsorbates which provided excess protons on the surface.

  • PDF

Study of Frozen Molecular Surfaces by $Cs^{+}$ Reactive ion Scattering and tow-Energy Secondary ton Mass Spectrometry

  • Park, S.-C.;Kang, H.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.1
    • /
    • pp.30-35
    • /
    • 2002
  • We show that a combined technique of Cs$^{+}$ reactive ion scattering (Cs$^{+}$ RIS) and low-energy secondary ion mass spectrometry (LESIMS) provides a powerful means for probing molecular films and their surface reactions. Simple molecules, including HCI, NH$_3$, D$_2$O, and their mixtures, were deposited into a thin film of several monolayer thickness on Ru(001) at low temperature in vacuum, and the surface was characterized by Cs$^{+}$ RIS and LESIMS. On pure films, D$_2$O, HCI, and NH$_3$ existed in the corresponding molecular states. When HCI and NH$_3$ were co-deposited, ammonium ion(NH$_4$$^{+}$) was readily formed by proton transfer from HCI to NH$_3$. In the presence of water molecules, HCI ionized first to hydronium ion(H$_3$O$^{+}$), which subsequently transferred proton to NH$_3$ to form NH$_4$$^{+}$. The proton transfer, however, did not occur to a completion on ice, in contrast to the complete reaction in aqueous solutions.s solutions.

  • PDF

Thickness-dependent Film Resistance of Thin Porous Film (얇은 다공 구조 박막에서의 두께에 따른 박막 저항 변화)

  • Song, A-Ree;Kim, Chul-Sung;Kouh, Tae-Joon
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.1
    • /
    • pp.6-10
    • /
    • 2012
  • We have observed the change in the film resistance of thin nickel film up to 13 nm, which is deposited on a porous anodic alumina substrate, prepared by two-step anodization technique under phosphoric acid. The resulting film grows as a porous film, following the pore structure on the surface of the alumina substrate, and the value of the resistance lies above $150k{\Omega}$ within the range of thickness studied here, decreasing very slowly with the film thickness. The observed resistance value is much higher than the reported value of a uniform film at the same thickness. Since the observed value of the surface coverage with the pores is smaller than the critical value, expected from the percolation theory, the pore structure limits the formation of conduction channel across the film. In addition, by comparing to the typical model of thickness-dependent resistivity, we expect that the scattering at the pore edge further increases the film resistance.

Effect of Surface Morphology in ZnO:Al/Ag Back Reflectors for Flexible Silicon Thin Film Solar Cells on Light Scattering Properties (플렉서블 실리콘 박막 태양전지용 ZnO:Al/Ag 후면반사막의 표면형상에 따른 광산란 특성 변화)

  • Beak, Sang-Hun;Lee, Jeong-Chul;Park, Sang-Hyun;Song, Jin-Soo;Yoon, Kyung-Hoon;Wang, Jin-Suk;Lee, Hi-Deok;Cho, Jun-Sik
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.501-507
    • /
    • 2010
  • Changes in surface morphology and roughness of dc sputtered ZnO:Al/Ag back reflectors by varying the deposition temperature and their influence on the performance of flexible silicon thin film solar cells were systematically investigated. By increasing the deposition temperature from $25^{\circ}C$ to $500^{\circ}C$, the grain size of Ag thin films increased from 100 nm to 1000 nm and the grain size distribution became irregular, which resulted in an increment of surface roughness from 6.6 nm to 46.6 nm. Even after the 100 nm thick ZnO:Al film deposition, the surface morphology and roughness of the ZnO:Al/Ag double structured back reflectors were the same as those of the Ag layers, meaning that the ZnO:Al films were deposited conformally on the Ag films without unnecessary changes in the surfacefeatures. The diffused reflectance of the back reflectors improved significantly with the increasing grain size and surface roughness of the Ag films, and in particular, an enhanced diffused reflectance in the long wavelength over 800 nm was observed in the Ag back reflectors deposited at $500^{\circ}C$, which had an irregular grain size distribution of 200-1000 nm and large surface roughness. The improved light scattering properties on the rough ZnO:Al/Ag back reflector surfaces led to an increase of light trapping in the solar cells, and this resulted in a noticeable improvement in the $J_{sc}$ values from 9.94 mA/$cm^2$ for the flat Ag back reflector at $25^{\circ}C$ to 13.36 mA/$cm^2$ for the rough one at $500^{\circ}C$. A conversion efficiency of 7.60% ($V_{oc}$ = 0.93, $J_{sc}$ = 13.36 mA/$cm^2$, FF = 61%) was achieved in the flexible silicon thin film solar cells at this moment.