The disconnection and fragmentation of ecological spaces that occur during the development process pose a significant threat to biodiversity. Urban center areas with high development pressure are particularly susceptible to low connectivity due to a scarcity of ecological space. This issue tends to be more pronounced in larger cities.To address this challenge, continuous efforts are needed to assess and improve the current state of ecological space connectivity at the level of individual projects and urban management. However, there is a lack of discussion regarding the analysis and improvement of ecological connectivity in metropolitan cities In line with this objective, this study evaluated the connectivity of ecological spaces in the city centers of Seoul, Busan, Daegu, Incheon, Gwangju, Daejeon, and Ulsan. The evaluation revealed that city centers exhibited lower connectivity of ecological spaces compared to their peripheries or the overall city. In addition, in the ecological network analysis that reflected regional characteristics, such as the species distribution model conducted on Daejeon, 510 optimal paths connecting forests of more than 1ha were derived. This study is significant as an example of deriving an ecological network based on regional characteristics, including quantitative figures necessary for establishing goals to improve urban ecological connectivity and biodiversity. It is anticipated that the results can be utilized to propose directions for enhancing ecological connectivity in environmental impact assessments or urban management and to establish an evaluation framework.
Journal of the Korea Society of Computer and Information
/
v.28
no.11
/
pp.29-42
/
2023
In this paper, we propose a method to enhance the prediction accuracy of solar irradiance for three major South Korean cities: Seoul, Busan, and Incheon. Our method entails the development of five generative models-vanilla GAN, CTGAN, Copula GAN, WGANGP, and TVAE-to generate independent variables that mimic the patterns of existing training data. To mitigate the bias in model training, we derive values for the dependent variables using random forests and deep neural networks, enriching the training datasets. These datasets are integrated with existing data to form comprehensive solar irradiance prediction models. The experimentation revealed that the augmented datasets led to significantly improved model performance compared to those trained solely on the original data. Specifically, CTGAN showed outstanding results due to its sophisticated mechanism for handling the intricacies of multivariate data relationships, ensuring that the generated data are diverse and closely aligned with the real-world variability of solar irradiance. The proposed method is expected to address the issue of data scarcity by augmenting the training data with high-quality synthetic data, thereby contributing to the operation of solar power systems for sustainable development.
The global increase in population and subsequent scarcity of terrestrial living spaces necessitates exploration of alternative habitats. Research into the development of underwater living areas provides promising avenues for the expansion of human living spaces and the use of marine environments. This study focuses on the failure envelope of suction caisson foundations subjected to combined loads in a marine setting, utilizing finite element analysis. The foundation is assumed to be embedded in clay characterized by a linear increase in undrained shear strength with depth, employing the von Mises constitutive model for the clay. The resulting failure envelope is represented as a tilted ellipse which expands as the undrained shear strength increases, maintaining a constant ratio between the major and minor axes. A comparative analysis of two suction caisson foundations with varying length-to-diameter ratios revealed that this ratio influences the dimensions of the failure envelope, with a tendency for the major-to-minor axis ratio to increase as the length-to-diameter ratio increases. These findings are critical for the design of suction caisson foundations in offshore environments.
Regarding the discourse on the correlation between governmental financial support and firm performance, much emphasis has been placed on the role of individual corporate characteristics as well as spatial features. However, there is a notable scarcity of empirical research examining the integrated impact of corporate and cluster characteristics on managerial performance. This study addresses this gap by empirically analyzing the financial and non-financial outcomes resulting from specific allocations of governmental financial support. Additionally, it explores corporate and cluster characteristics predicted to moderate the influence between governmental financial support and firm performance. The analysis employs a two-level hierarchical linear model (HLM) at individual and group levels. The data, reorganized based on business registration numbers at the firm and cluster levels, ultimately utilized panel data from 83,395 firms and 641 clusters. The research findings indicate that governmental financial support demonstrates a positive effect (+) on both sales and patents for firms, suggesting its effectiveness in complementing market failures. Results from the hierarchical linear model analysis show that when combined with human capital capacity, absorptive capacity, and cluster network density, governmental financial support exhibits significant positive effects on sales. This study contributes theoretical and practical insights by analyzing the relationship between governmental financial support and firm performance using a two-level hierarchical linear model. It highlights the role of corporate characteristics such as human capital and absorptive capacity, along with cluster characteristics like cluster network density, in moderating the effects of governmental financial support on firm performance.
The current study investigated the factors influencing the buyer's repurchase intention for second-hand products. This study first identified perceived risk and purchase value as the two primary influencing variables. Additionally, some exogenous variables influencing these two variables were examined. Statistical analysis using Partial Least Squares (PLS) revealed that product uncertainty, seller uncertainty, and site trust had statistically significant relationships with perceived transaction risk. However, while economic benefit showed a significant impact on purchase value, product scarcity and resale value did not exhibit a significant relationship with purchase value. Perceived transaction risk was found to have an insignificant relationship with repurchase intention, but indirectly influenced repurchase intention through purchase value. Purchase value was identified as having a significant influence on repurchase intention. Therefore, it was concluded that purchase value is the most important factor influencing repurchase intention in the purchase of second-hand products, while transaction risk indirectly influences repurchase intention through purchase value. The study indicates that product uncertainty and economic benefit are the most significant exogenous factors influencing transaction risk and purchase value, respectively.
Sieun Kim;SeongYeon Jung;MoonSu Kim;Youn-Tae Kim;Yong-Hoon Cha;Chung-Mo Lee
Journal of the Korean earth science society
/
v.45
no.1
/
pp.72-84
/
2024
Recently, the vulnerability of water resources has been increasing owing to climate change, highlighting the importance of groundwater. In particular, the Nakdong River Basin, located in the southern part of Korea, experiences frequent water scarcity phenomena, such as droughts. This study analyzed the hydrogeological characteristics of the study area by examining groundwater and stream water in the Gwangrye Stream, downstream of the Nakdong River Basin, in August and October 2023. Therefore, we collected samples from 54 groundwater wells and five streams for water quality analysis. The results of the field tests indicated an increasing trend in electrical conductivity from upstream to downstream in the study area. Laboratory analyses confirmed that the concentration of Na increased from upstream to downstream more than that of Ca. In conclusion, both stream water and groundwater were influenced by anthropogenic contamination. These changes were closely related to land use in the study area. The upstream areas are primarily composed of forests, whereas the downstream areas are composed of industrial complexes, wastewater treatment facilities, and agricultural areas, which are likely to affect both stream water and groundwater.
The Transactions of the Korea Information Processing Society
/
v.13
no.3
/
pp.91-101
/
2024
The utilization of container virtualization technology ensures the consistency and portability of data-intensive and memory volatile workflows. Kubernetes serves as the de facto standard for orchestrating these container applications. Cloud users often overprovision container applications to avoid container restarts caused by resource shortages. However, overprovisioning results in decreased CPU and memory resource utilization. To address this issue, oversubscription of container resources is commonly employed, although excessive oversubscription of memory resources can lead to a cascade of container restarts due to node memory scarcity. Container restarts can reset operations and impose substantial overhead on containers with high memory volatility that include numerous stateful applications. This paper proposes a technique to mitigate container restarts in a memory oversubscription environment based on Kubernetes. The proposed technique involves identifying containers that are likely to request memory allocation on nodes experiencing high memory usage and temporarily pausing these containers. By significantly reducing the CPU usage of containers, an effect similar to a paused state is achieved. The suspension of the identified containers is released once it is determined that the corresponding node's memory usage has been reduced. The average number of container restarts was reduced by an average of 40% and a maximum of 58% when executing a high memory volatile workflow in a Kubernetes environment with the proposed method compared to its absence. Furthermore, the total execution time of a container workflow is decreased by an average of 7% and a maximum of 13% due to the reduced frequency of container restarts.
Journal of the Korea institute for structural maintenance and inspection
/
v.28
no.4
/
pp.55-61
/
2024
Recently, the number of aging concrete structures is steadily increasing. This is because many of these structures are reaching their expected lifespan. Such structures require accurate inspections and persistent maintenance. Otherwise, their original functions and performance may degrade, potentially leading to safety accidents. Therefore, research on objective inspection technologies using deep learning and computer vision is actively being conducted. High-resolution images can accurately observe not only micro cracks but also spalling and exposed rebar, and deep learning enables automated detection. High detection performance in deep learning is only guaranteed with diverse and numerous training datasets. However, surface damage to concrete is not commonly captured in images, resulting in a lack of training data. To overcome this limitation, this study proposed a method for generating concrete surface damage images, including cracks, spalling, and exposed rebar, using stable diffusion. This method synthesizes new damage images by paired text and image data. For this purpose, a training dataset of 678 images was secured, and fine-tuning was performed through low-rank adaptation. The quality of the generated images was compared according to three base models of stable diffusion. As a result, a method to synthesize the most diverse and high-quality concrete damage images was developed. This research is expected to address the issue of data scarcity and contribute to improving the accuracy of deep learning-based damage detection algorithms in the future.
Unlike other disasters, the water shortage problem caused by drought is characterized by the long-lasting ripple effect of the social and economic sectors in all regions of Korea, and the types and purposes of water mainly used are different depending on the type of region, so the factors and scale of water shortage damage are different. In this study, a methodology to evaluate the risk of water shortage based on socioeconomic characteristics was developed and applied to Gwangju and Jeollanam-do to analyze the results. To this end, 20 impact indicators for risk, exposure, and vulnerability items were selected according to the climate risk concept of IPCC AR6. The results of the water shortage risk evaluation reflecting socioeconomic characteristics were different from the risk results considering only the existing meteorological and hydrological factors. The areas with the greatest risk of water shortage were calculated as Yeonggwang-eup in Yeonggwang-gun, Yeonsan-dong and Haean-dong 4-ga in Mokpo-si, Jeokryang-dong in Yeosu-si and Geumsan-myeon in Goheung-si. Through the evaluation results, risk factors and countermeasures for water shortage were derived in consideration of detailed characteristics of the region, which can be used as data contributing to the establishment of measures to reduce drought damage tailored to the region in the future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.