• Title/Summary/Keyword: scanning mirror

Search Result 97, Processing Time 0.024 seconds

Simulation of Lens Aberration Correction for Polygon Mirror Scanning (PMS) (Polygon Mirror Scanning (OMS)을 위한 렌즈의 구면 수차 보정 시뮬레이션)

  • 신승연
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1999.08a
    • /
    • pp.128-129
    • /
    • 1999
  • Polygon Mirror Scanning(PMS) is composed of LED array, magnifying lens, polygon mirror and motor. It is important to correct the lens aberrations to gain the image we want to show. In this paper, we have simulated the lens aberration correction to reduce the spherical aberration . We have obtained a aspherical lens which is corrected the spherical aberration.

  • PDF

Design of 2-DoF Scanning Mirror using Electromagnetic force (전자기력을 이용한 2 자유도 스캐닝 미러 설계)

  • Shin, Bu Hyun;Kim, Young-Jin;Oh, Dongho;Lee, Jeong-Woo;Choi, Hyun-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.177-178
    • /
    • 2014
  • This work proposes a two-dimensional (2-D) laser scanning mirror actuator with a simple structure composed of one magnet and four coils. The mirror-actuating device generates 2-D scanning motions about two orthogonal axes by combining electromagnetic actuators of the conventional moving-magnet types. The magnet is attached to back side of the mirror placed inside of the moving frame. The four coils is placed on the base frame in a cross shape. We implement a finite element analysis to calculate magnetic flux in the electromagnetic system with the overall size of $20mm(W){\times}20mm(D){\times}13mm(H)$ for the mirror size of $8mm{\times}8mm$. The each moving-magnet type electromagnetic actuator has the motor constant 3.41 mNm/A and the restoring constant 1.75 mNm/rad and the resonance frequency of 58 Hz and the bandwidth of 80 Hz. The proposed compact and simple 2-D scanning mirror predicted advantages of large 2-D angular deflections, wide frequency bandwidth and low manufacturing cost.

  • PDF

Position Control of Laser Scanning Mirror Using Piezoelectric Actuator (압전작동기를 이용한 레이져 스케닝 미러의 위치제어)

  • 지학래;김재환;최승복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.442-445
    • /
    • 1995
  • This paper presents the position tracking control of a laser scanning mirror system in which piezoelectic actuator is incorporated. Using the shear mode of the piezoelectric actuator,angular oscillation of a laser scanning mirror is derived. Torsion bar is rhen designed and attached to the piezoelctric actuator in order to magnify the amplitude generated by the actuator. Finite element modeling and analysis are essntial for designing the piezoelectic actuator. The torsional resonance mode of the piezoelectric actuator is found from the model analysis of the actuator and the mechanical shear is matched with the driving frequency. Transfer function between the electrical excitation and the mechanical shear deformation at resonance frequency is found form the response of the actuator calculated by the finite element analysis and the governing equation of the system is derived from d'Alembert's principle. Tracking control performance for desired trajectory which is, in fact, sinusoidal curve is presented in order to demonstrate the validity of the proposed system.

  • PDF

Design of Electromagnetically Driven Micro Scanning Mirror for Laser Animation System (레이저 디스플레이를 위한 전자력 구동 스캐닝 미러의 설계)

  • Lee, Kyoung-Gun;Jang, Yun-Ho;Yoo, Byung-Wook;Jin, Joo-Young;Lim, Yong-Geun;Kim, Yong-Kweon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.578-585
    • /
    • 2009
  • In this paper, we present the design of an electromagnetic scanning mirror with torsional springs. The scanning mirror consisting of torsional springs and electromagnetic coils was designed for the applications of laser animation systems. We analyzed and optimized three types of torsional springs, namely, straight beam springs (SBS), classic serpentine springs (CSS), and rotated serpentine springs (RSS). The torsional springs were analyzed in terms of electrical resistance, fabrication error tolerance, and resonance mode separation of each type using analytical formula or numerical analysis. The RSS has advantages over the others as follows: 1) A low resistance of conductors, 2) wide resonance mode separation, 3) strong fabrication error tolerance, 4) a small footprint. The double-layer coils were chosen instead of single-layer coils with respect to electromagnetic forces. It resulted in lower power consumption. The geometry of the scanning mirror was optimized by calculations; RSS turn was 12 and the width of double-layer coil was $100{\mu}m$, respectively. When the static rotational angle is 5 degrees, the power consumption of the mirror plate was calculated to be 9.35 mW since the resistance of the coil part and a current is $122{\Omega}$ and 8.75 mA, respectively. The power consumption of full device including the mirror plate and torsional springs was calculated to be 9.63 mW.

Design of a large deflection 2 DOF scanning mirror using an electromagnetic force (전자기력을 이용한 대변위 구동 2축 스캐닝 미러의 설계)

  • Lee, Kyoung-Gun;Jang, Yun-Ho;Yoo, Byung-Wook;Jin, Joo-Young;Lim, Yong-Geun;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.181-182
    • /
    • 2008
  • In this paper, we present the design of an electromagnetic scanning mirror with rotated serpentine springs. We considered three types of torsional springs: simple beam springs (SBS), classic serpentine springs (CSS), and rotated serpentine springs (RSS). The analysis was done for an electrical resistance, differences in the mode-frequency, and resonances regarding to spring thickness. Electromagnetic coils under the mirror plate were also analyzed for power consumption and the mechanical deflection. From the analysis result, RSS and electromagnetic coils were designed for the silicon scanning mirror.

  • PDF

Realization of a High Speed Optic Scanner for Infrared Thermal Imaging (적외선 체열촬영시스템을 위한 고속 광주사기의 구현)

  • 이수열
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.43-48
    • /
    • 1995
  • A high speed optic scanner capable of 16 frames/sec imaging has been developed for the realization of the infrared thermal Imaging system with a single element infrared sensor. The high speed optic scanner is composed of a rotating polygon mirror for horizontal scanning, a flat mirror mounted on a galvanometer for vertical scanning, and a spherical mirror. It has been experimentally found that the optic scanner is capable of 16 framesllsec imaging with the frame matrix size of 256 x 64.

  • PDF

Wide Beam Optical System for the Laser Materials Processing (레이저 재료 가공을 위한 광폭빔 광학 장치)

  • 김재도;조응산;전병철
    • Laser Solutions
    • /
    • v.1 no.1
    • /
    • pp.24-29
    • /
    • 1998
  • A new wide laser beam optical system for the laser materials processing has been developed with a polygonal mirror. It consists of polygonal mirror and cooling part that prevents the surface of rotating polygonal mirror from damage by heat. The polygonal minors have been designed and made as 24 and 30 facets in pyramid type. This system provides a uniform linear laser heat source with the surface scanning width from 15 to 50mm according to the scanning height To examine the wide laser beam, He-Ne laser is used. Also, Acryl is used to confirm the laser beam pattern by bum-pattern print To analyze the energy distribution of the wide laser ben empirical values and theoretical values are compared and discussed. To improve the efficiency of the wide laser beam optical system, methods are suggested by the optical theories. For larger area processing like turbine blade, drawing blade, cold roller and guide plate, optimal overlapping locations have been calculated and analyzed by geometric and optical theories.

  • PDF

Head Fixed Type Multi-Focus Display System Using Galvano-Scanner and DMD(Digital Micro-Mirror Device) (갈바노 스캐너와 DMD(Digital Micro-mirror Device)를 이용한 두부 고정형 다초점 디스플레이 시스템)

  • Kim, Dong-Wook;Kwon, Yong-Moo;Kim, Sung-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.1117-1123
    • /
    • 2009
  • Head fixed type multi-focus display system using Galvano-scanner and DMD(Digital Micro-mirror Device), which is able to perfectly accommodate, can solve eye fatigue due to conflict between convergence eye movement and accommodation action in stereoscopic display. This system is able to accommodate through making convergence point about each view point and offering it in front of observer's pupil by using laser scanning method. In this paper, we analyzed laser scanning method of this multi-focus display system. And multi-focus display system based on this analysis was made, which showed that focus adjustment was possible through video camera. As a result, formation principle of view point of multi-focus system by laser scanning method was verified.

Optical system design of a mobile LIDAR for air polution research (대기오염 연구용 이동형 LIDAR 광학계 설계)

  • 홍경희
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.191-195
    • /
    • 1996
  • A optical system of a movile LIDAR is designed for air pollution research. After the inverse Cassegrain type collimator, the laser beam falls on the mirror which serve for coinciding optical axis of laser beam and the receiving telescope. Then, it is directed into the atmosphere and back scattered radiation back to the receiving telescope by the scanning mirror. The unit of scanning mirror allows to rotate the mirror along the altitude 0$^{\circ}$~60$^{\circ}$, and the azimuth 0$^{\circ}$~360$^{\circ}$. The scanning mirror is not connected with the receiving telescope but placed on the roof of the mobile. The received beam is spatial filtered by a spatial filter and collimated by a fabric lens. Thereafter, the beam is devided into 2 channel for registration by a beam splitter. Each laser beam is transformed into an electrical signal by means of the photomultifier and then processed to be analyzed.

  • PDF