• Title/Summary/Keyword: scanning electronic microscope (SEM)

Search Result 220, Processing Time 0.028 seconds

Fatigue damage monitoring and evolution for basalt fiber reinforced polymer materials

  • Li, Hui;Wang, Wentao;Zhou, Wensong
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.307-325
    • /
    • 2014
  • A newly developed method based on energy is presented to study the damage pattern of FRP material. Basalt fiber reinforced polymer (BFRP) is employed to monitor the damage under fatigue loading. In this study, acoustic emission technique (AE) combined with scanning electronic microscope (SEM) technique is employed to monitor the damage evolution of the BFRP specimen in an approximate continuous scanning way. The AE signals are analyzed based on the wavelet transform, and the analyses are confirmed by SEM images. Several damage patterns of BFRP material, such as matrix cracking, delamination, fiber fracture and their combinations, are identified through the experiment. According to the results, the cumulative energy (obtained from wavelet coefficients) of various damage patterns are closely related to the damage evolution of the BFRP specimens during the entire fatigue tests. It has been found that the proposed technique can effectively distinguish different damage patterns of FRP materials and describe the fatigue damage evolution.

Electrochemical Characteristics of $LiFePO_4$ with Conductivity Materials for Lithium Polymer Batteries

  • Jin, En Mei;Wang, Jiao;Zhao, Xing Guan;Park, Kyung-Hee;Gu, Hal-Bon;Park, Bok-Kee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.132-132
    • /
    • 2009
  • Phospho-olivine $LiFePO_4$ cathode materials were prepared by hydrothermal reaction. In this study, Multi-walled carbon nanotube (MWCNT) and Carbon black was added to enhance the electrical conductivity of $LiFePO_4$. $LiFePO_4$, $LiFePO_4$-MWCNT and $LiFePO_4$-C particles were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) transmission electron microscope (TEM). $LiFePO_4/SPE/Li$, $LiFePO_4$-MWCMT/SPE/Li and $LiFePO_4$-C/SPE/Li cells were characterized electrochemically by charge/discharge experiments at a constant current density of $0.1mA\;cm^{-2}$ in a range between 2.5 and 4.3 V vs. $Li/Li^+$ and cyclic voltammetry (CV).

  • PDF

The study of laser processing parameter for $\mu$-BGA cutting ($\mu$-BGA 절단을 위한 레이저 가공 파라미터 연구)

  • Baek, kwang-yeol;Lee, cheon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.652-655
    • /
    • 2001
  • In this paper, I have studied minimization of the kerf-width and surface burning which are occurred after the singulation process of multi layer $\mu$-BGA( thickness 1.1 mm, 0.9 mm) with a pulsed Nd:YAG( = 532 nm, repetition rate = 10 Hz) laser. The thermal energy of a pulsed Nd:YAG laser is used to cut the copper layer. I have studied are minimization of the surface burning and kerf-width using a photo resist, $N_2$blowing and polyester double sided tape as a cutting parameter. The $N_2$blowing reduces a laser energy loss by debris and suppresses a surface carbonization. Also, I have studied characters of cutting with a choice of side of laser beam incidence. The SEM(Scanning Electron Microscope), non-contact 3D inspector and high-resolution microscope are used to measure kerf width and surface state. The optimum value of 1.1 mm $\mu$-BGA singulation is 524 $\mu$m that is reduced kerf width of 60 % with $N_2$blowing. And I obtained reduction of carbonization of 68 % with a polyester double side tape in 0.9 mm $\mu$-BGA. I used laser intensity of 1.91$\times$10$^{6}$ / $\textrm{cm}^2$ in this study.

  • PDF

A Study on Substrate Temperature Conditions for Crystal Growth of Copper-Phthalocyanine(Cu-Pc) (Copper-phthalocyanine(Cu-Pc)의 결정성장을 위한 substrate의 온도조건에 관한 연구)

  • Kim, M.;Kang, S.;Kim, K.;Cho, S.;Jung, Y.;Kim, J.;Hong, S.;Cha, D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.395-396
    • /
    • 2008
  • Copper-Phthalocyanine (Cu-Pc) thin films of 100nm thickness have been deposited on silicon substrates as the different heating temperatures by thermal evaporation deposition technique. X-ray patterns showed with different temperature conditions at the $2\theta$ range of 5-$55^{\circ}$. The surface roughness of Cu-Pc thin films was investigated by using an atomic force microscope (AFM). A scanning electron microscope (SEM) has been used to characterize the micro-structures and morphologies depended on the substrate temperatures.

  • PDF

A Study on the Composition Variation of 600v IV with Thermal Deterioration (열열화에에 따른 600V IV의 조성변화에 관한 연구)

  • 최충석;류선희;김형래;이경섭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.53-56
    • /
    • 1999
  • The weight decreases of the thermal deteriorated IV were rapidly increased at 80$0^{\circ}C$ and over. At the results of the analysis of the metallurgical microscope photographs. the surface of the thermal deteriorated IV at 30$0^{\circ}C$ was mixed with the elongated and original structures of Cu. But the elongated structures could not detected at 90$0^{\circ}C$ and over. The surface structures of SEM were detected a lot of small rounded particles between crystallizations. The EDX spectra of the thermal deteriorated IV at 3$0^{\circ}C$ were uniformly detected CuL, CuK, OK, and CIK, regardless of the scanning length, but the spectra of CIK could not found at 90$0^{\circ}C$. At the DTA curves, the endothermic reactions were occurred at about 25$0^{\circ}C$ to 30$0^{\circ}C$ and 43$0^{\circ}C$, and the exothermic reactions were occurred at about 48$0^{\circ}C$ respectively.

  • PDF

Direct Bonding Characteristics of 2" 3C-SiC Wafers for Harsh Environment MEMS Applications (극한 환경 MEMS용 2" 3C-SiC기판의 직접접합 특성)

  • 정귀상
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.700-704
    • /
    • 2003
  • This paper describes on characteristics of 2" 3C-SiC wafer bonding using PECVD (plasma enhanced chemical vapor deposition) oxide and HF (hydrofluoride acid) for SiCOI (SiC-on-Insulator) structures and MEMS (micro-electro-mechanical system) applications. In this work, insulator layers were formed on a heteroepitaxial 3C-SiC film grown on a Si (001) wafer by thermal wet oxidation and PECVD process, successively. The pre-bonding of two polished PECVD oxide layers made the surface activation in HF and bonded under applied pressure. The bonding characteristics were evaluated by the effect of HF concentration used in the surface treatment on the roughness of the oxide and pre-bonding strength. Hydrophilic character of the oxidized 3C-SiC film surface was investigated by ATR-FTIR (attenuated total reflection Fourier transformed infrared spectroscopy). The root-mean-square suface roughness of the oxidized SiC layers was measured by AFM (atomic force microscope). The strength of the bond was measured by tensile strength meter. The bonded interface was also analyzed by IR camera and SEM (scanning electron microscope), and there are no bubbles or cavities in the bonding interface. The bonding strength initially increases with increasing HF concentration and reaches the maximum value at 2.0 % and then decreases. These results indicate that the 3C-SiC wafer direct bonding technique will offers significant advantages in the harsh MEMS applications.ions.

A Study on the Ball-off of Via Balls Bonded by Solder Paste (Solder Paste로 접합된 비아볼의 Ball-off에 관한 연구)

  • Kim, Kyoung-Su;Kim, Jin-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.575-579
    • /
    • 2004
  • Package reliability test was conducted to investigate the effect of solder paste composition at BGA Package. It was found that the shape and size of the phase form are affected by the processing parameters. The material have used to fill in the via was Sn/36Pb/2Ag and Sn/0.75Cu type solder paste. Sn/36Pb/2Ag and Sn/0.75Cu paste were fabricated on Tape-BGA substrates by screen printing process, and via ball mount data were characterized with variations of dwell time of 85 seconds at reflow peak temperature at 22$0^{\circ}C$ or 24$0^{\circ}C$. The test condition was MRT 30 $^{\circ}C$/60 %RH/96 HR. Failures formed of a ball-off in solder paste process were observed by using a Optical Microscope and SEM(Scanning Electron Microscope). It was concluded that intermetallic layer growth played important roles in increasing solder fatigue strength for addition of Ag composition. The degradation of shear strength of solder composition is discussed.

Resistive Switching Effects of Zinc Silicate for Nonvolatile Memory Applications

  • Im, Minho;Kim, Jisoo;Park, Kyoungwan;Sok, Junghyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.348-352
    • /
    • 2022
  • Resistive switching behaviors of a co-sputtered zinc silicate thin film (ZnO and SiO2 targets) have been investigated. We fabricated an Ag/ZnSiOx/highly doped n-type Si substrate device by using an RF magnetron sputter system. X-ray diffraction pattern (XRD) indicated that the Zn2SiO4 was formed by a post annealing process. A unique morphology was observed by scanning electron microscope (SEM) and atomic force microscope (AFM). As a result of annealing process, 50 nm sized nano clusters were formed spontaneously in 200~300 nm sized grains. The device showed a unipolar resistive switching process. The average value of the ratio of the resistance change between the high resistance state (HRS) and the low resistance state (LRS) was about 106 when the readout voltage (0.5 V) was achieved. Resistance ratio is not degraded during 50 switching cycles. The conduction mechanisms were explained by using Ohmic conduction for the LRS and Schottky emission for the HRS.

The Fabrication and Characterization of Embedded Switch Chip in Board for WiFi Application (WiFi용 스위치 칩 내장형 기판 기술에 관한 연구)

  • Park, Se-Hoon;Ryu, Jong-In;Kim, Jun-Chul;Youn, Je-Hyun;Kang, Nam-Kee;Park, Jong-Chul
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.3
    • /
    • pp.53-58
    • /
    • 2008
  • In this study, we fabricated embedded IC (Double Pole Double throw switch chip) polymer substrate and evaluate it for 2.4 GHz WiFi application. The switch chips were laminated using FR4 and ABF(Ajinomoto build up film) as dielectric layer. The embedded DPDT chip substrate were interconnected by laser via and Cu pattern plating process. DSC(Differenntial Scanning Calorimetry) analysis and SEM image was employed to calculate the amount of curing and examine surface roughness for optimization of chip embedding process. ABF showed maximum peel strength with Cu layer when the procuring was $80\sim90%$ completed and DPDT chip was laminated in a polymer substrate without void. An embedded chip substrate and wire-bonded chip on substrate were designed and fabricated. The characteristics of two modules were measured by s-parameters (S11; return loss and S21; insertion loss). Insertion loss is less than 0.55 dB in two presented embedded chip board and wire-bonded chip board. Return loss of an embedded chip board is better than 25 dB up to 6 GHz frequency range, whereas return loss of wire-bonding chip board is worse than 20 dB above 2.4 GHz frequency.

  • PDF

Performance of Solution Processed Zn-Sn-O Thin-film Transistors Depending on Annealing Conditions

  • Han, Sangmin;Lee, Sang Yeol;Choi, Jun Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.2
    • /
    • pp.62-64
    • /
    • 2015
  • We have investigated zinc tin oxide (ZTO) thin films under various silicon ratios. ZTO TFTs were fabricated by solution processing with the bottom gate structure. Furthermore, annealing process was performed at different temperatures in various annealing conditions, such as air, vacuum and wet ambient. Completed fabrication of ZTO TFT, and the performance of TFT has been compared depending on the annealing conditions by measuring the transfer curve. In addition, structure in ZTO thin films has been investigated by X-ray diffraction spectroscopy (XRD) and Scanning electron microscope (SEM). It is confirmed that the electrical performance of ZTO TFTs are improved by adopting optimized annealing conditions. Optimized annealing condition has been found for obtaining high mobility.