• 제목/요약/키워드: scanning capacitance microscopy

검색결과 74건 처리시간 0.025초

일렉트론홀로그래피와 주사정전용량현미경 기술을 이용한 2차원 도펀트 프로파일의 측정 (Measurement of 2-Dimensional Dopant Profiles by Electron Holography and Scanning Capacitance Microscopy Methods)

  • 박경우;;현문섭;유정호;양준모;윤순길
    • 대한금속재료학회지
    • /
    • 제47권5호
    • /
    • pp.311-315
    • /
    • 2009
  • 2-dimensional (2D) dopant profiling in semiconductor device was carried out by electron holography and scanning capacitance microscopy methods with the same multi-layered p-n junction sample. The dopant profiles obtained from two methods are in good agreement with each other. It demonstrates that reliability of dopant profile measurement can be increased through precise comparison of 2D profiles obtained from various techniques.

SPM(Scanning Probe Microscopy)을 이용한 국소영역에서 실리콘 나노크리스탈의 전기적 특성 분석 (Electrical property analysis of Si nanocrystal by SPM(Scanning Probe Microscopy) on insulating substrate)

  • 최민기;김정민;강치중;강윤호;김용상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.95-97
    • /
    • 2004
  • 본 연구에서는 Scanning Capacitance Microscopy (SCM)와 Electrostatic Force Microscopy (EFM)을 이용하여 국소영역에서 실리콘나노 크리스탈의 전기적 특성을 분석하였다. 실리콘 나노 크리스탈은 에어로솔 방식으로 P-type 실리콘웨이퍼 위에 $10{\sim}40\;nm$의 크기와 약 $10^{11}/cm^2$의 밀도를 갖도록 제작하였다. 실리콘 나노 크리스탈에서 전자와 정공의 trapping 현상은 EFM, SCM 이미지를 통하여 관찰하였고 이러한 나노 크리스탈의 국소영역 특성을 MOS 캐패시터 구조의 C-V 특성을 비교 분석하였다. 또한, 나노 크리스탈에 trapping된 전하의 detrapping 과정을 스트레스 조건에 따라 분석하였다.

  • PDF

스테이지 구동방식 주사형정전용량 현미경 (Scanning Capacitance Microscope by Stage Driving)

  • Kim Eung Kyeu
    • 전자공학회논문지B
    • /
    • 제31B권7호
    • /
    • pp.101-107
    • /
    • 1994
  • In this work a scanning capacitance microscopy(SCaM) by stage driving is proposed and presented some of the experimental results.SCaM is a microscope which scans a surface of materials mechanically in two or two point five dimensions by a capacitance probe with a few tenth $\mu\textrm{m}$ ize tip, and display images of the surface shape or capacitive distribution. The present target of the SCaM is 0.1$\mu\textrm{m}$ resolution power which exceeds that of optical microscope. This will become a powerful tool for inspecting ULSI pattern etched by X-ray biological data etc. The experimental system is composed based on a VHD video disk which captures the capacitance changes of the video disk surface and converts it into video signal.

  • PDF

Preparation of novolac-type phenol-based activated carbon with a hierarchical pore structure and its electric double-layer capacitor performance

  • Lee, Dayoung;Jung, Jin-Young;Park, Mi-Seon;Lee, Young-Seak
    • Carbon letters
    • /
    • 제15권3호
    • /
    • pp.192-197
    • /
    • 2014
  • A hierarchical pore structured novolac-type phenol based-activated carbon with micropores and mesopores was fabricated. Physical activation using a sacrificial silicon dioxide ($SiO_2$) template and chemical activation using potassium hydroxide (KOH) were employed to prepare these materials. The morphology of the well-developed pore structure was characterized using field-emission scanning electron microscopy. The novolac-type phenol-based activated carbon retained hierarchical pores (micropores and mesopores); it exhibited high Brunauer-Emmett-Teller specific surface areas and hierarchical pore size distributions. The hierarchical pore novolac-type phenol-based activated carbon was used as an electrode in electric double-layer capacitors, and the specific capacitance and the retained capacitance ratio were measured. The specific capacitances and the retained capacitance ratio were enhanced, depending on the $SiO_2$ concentration in the material. This result is attributed to the hierarchical pore structure of the novolac-type phenol-based activated carbon.

Capacitance behaviors of Polyaniline/Graphene Nanosheet Composites Prepared by Aniline Chemical Polymerization

  • Kim, Jieun;Park, Soo-Jin;Kim, Seok
    • Carbon letters
    • /
    • 제14권1호
    • /
    • pp.51-54
    • /
    • 2013
  • In this study, polyaniline (PANI)/graphene nanosheet (GNS) composites were synthesized through chemical oxidation polymerization by changing the weight ratio of aniline monomers. To examine the morphological structure of the composites, scanning electron microscopy and transmission electron microscopy (TEM) were conducted. TEM results revealed that fibril-like PANI with a diameter of 50 nm was homogeneously coated on the surface of the GNS. The electrochemical properties of the composites were studied by cyclic voltammetry in 1 M $H_2SO_4$ electrolyte. Among the prepared samples, the PANI/GNS (having 40 wt% aniline content) showed the highest specific capacitance, 528 $Fg^{-1}$, at 10 $mVs^{-1}$. The improved performance was attributed to the GNS, which provides a large number of active sites and good electrical conductivity. The resulting composites are promising electrode materials for high capacitative supercapacitors.

Three-dimensional Graphene Aerogels for Electrochemical Energy Storage

  • Yun, Sol;Park, Ho Seok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.485.1-485.1
    • /
    • 2014
  • In this research, we report the synthesis of three-dimensional (3D) hierarchical porous graphene aerogels (hpGAs) for application to electrochemical energy storage. For electrochemical systems, the specific capacitance is a key parameter to evaluate the characteristics of electrode materials. By taking full advantage of large surface area, 3D hpGAs would achieve the larger specific capacitance over rGO film and GAs. Microscopic structures and topologies of hpGAs were investigated using field emission scanning electron microscopy and transmission electron microscopy. X-ray photoelectron spectroscopy was used to determine the chemical compositions of rGO film, GAs, and hpGAs. Raman spectra were recorded from 100 to 2500 cm-1 at room temperature using a Raman spectroscopy equipped with a ${\times}100$ objective was used. The specific area and pore distribution of GAs and hpGAs were obtained using a Brunauer-Emmett-Teller apparatus.

  • PDF

Preparation and capacitance properties of graphene based composite electrodes containing various inorganic metal oxides

  • Kim, Jeonghyun;Byun, Sang Chul;Chung, Sungwook;Kim, Seok
    • Carbon letters
    • /
    • 제25권
    • /
    • pp.14-24
    • /
    • 2018
  • Electrochemical properties and performance of composites performed by incorporating metal oxide or metal hydroxide on carbon materials based on graphene and carbon nanotube (CNT) were analyzed. From the surface analysis by field emission scanning electron microscopy and field emission transmission electron microscopy, it was confirmed that graphene, CNT and metal materials are well dispersed in the ternary composites. In addition, structural and elemental analyses of the composite were conducted. The electrochemical characteristics of the ternary composites were analyzed by cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy in 6 M KOH, or $1M\;Na_2SO_4$ electrolyte solution. The highest specific capacitance was $1622F\;g^{-1}$ obtained for NiCo-containing graphene with NiCo ratio of 2 to 1 (GNiCo 2:1) and the GNS/single-walled carbon $nanotubes/Ni(OH)_2$ (20 wt%) composite had the maximum specific capacitance of $1149F\;g^{-1}$. The specific capacitance and rate-capability of the $CNT/MnO_2/reduced$ graphene oxide (RGO) composites were improved as compared to the $MnO_2/RGO$ composites without CNTs. The $MnO_2/RGO$ composite containing 20 wt% CNT with reference to RGO exhibited the best specific capacitance of $208.9F\;g^{-1}$ at a current density of $0.5A\;g^{-1}$ and 77.2% capacitance retention at a current density of $10A\;g^{-1}$.

Effect of Al2O3-ZrO2 Composite Oxide Thickness on Electrical Properties of Etched Al Foil

  • Chen, Fei;Park, Sang-Shik
    • 한국재료학회지
    • /
    • 제26권3호
    • /
    • pp.160-165
    • /
    • 2016
  • To increase the capacitance of an Al electrolytic capacitor, the anodic oxide film, $Al_2O_3$, was partly replaced by an $Al_2O_3-ZrO_2$ (Al-Zr) composite film prepared by the vacuum infiltration method and anodization. The microstructure and composition of the prepared samples were investigated by scanning electron microscopy and transmission electron microscopy. The coated and anodized samples showed multi-layer structures, which consisted of an inner Al hydrate layer, a middle Al-Zr composite layer, and an outer $Al_2O_3$ layer. The thickness of the coating layer could go up to 220 nm when the etched Al foil was coated 8 times. The electrical properties of the samples, such as specific capacitance, leakage current, and withstanding voltages, were also characterized after anodization at 100 V and 600 V. The capacitances of samples with $ZrO_2$ coating were 36.3% and 27.5% higher than those of samples without $ZrO_2$ coating when anodized at 100 V and 600 V, respectively.

전자소자로의 응용을 위한 CNT/PVDF 복합막에서 CNT 조성에 의한 정전용량과 출력전류 제어 (Capacitance and Output Current Control by CNT Concentration in the CNT/PVDF Composite Films for Electronic Devices)

  • 이선우;노임준;신백균;김용진
    • 전기학회논문지
    • /
    • 제62권8호
    • /
    • pp.1115-1119
    • /
    • 2013
  • The carbon nanotube/poly-vinylidene fluoride (CNT/PVDF) composite films for the use of electronic devices were fabricated by spray coating method using the CNT/PVDF solution, which was prepared by adding PVDF pellets into the CNT dispersed N-Methyl-2-pyrroli-done (NMP) solution. The CNT/PVDF composite films were peeled off from the glass substrate and were investigated by the scanning electron microscopy, which revealed that the CNTs were uniformly dispersed in the PVDF films and thickness of the films were approximately $20{\mu}m$. The capacitance of the CNT/PVDF films increased dramatically by adding CNTs into the PVDF matrix, and finally saturated approximately 1880 pF. However, the I-V curves didn't show any saturation effect in the CNT concentration range of 0 ~ 0.04 wt%. Therefore we can control the performance of the devices from the CNT/PVDF composite film by adjusting the current level resulted from the CNT concentration with the uniform capacitance value.