• 제목/요약/키워드: scaling of ground motion

검색결과 23건 처리시간 0.022초

Scaling of ground motions from Vrancea (Romania) earthquakes

  • Pavel, Florin;Vacareanu, Radu
    • Earthquakes and Structures
    • /
    • 제11권3호
    • /
    • pp.505-516
    • /
    • 2016
  • This paper evaluates the scaling of ground motions recorded from nine intermediate-depth earthquakes produced in the Vrancea seismic zone in Romania. The considered ground motion database consists of 363 horizontal recordings obtained on soil classes B and C (according to Eurocode 8). An analysis of the inter- and intra-event spectral accelerations is performed in order to gain information regarding the magnitude and distance scaling of the Vrancea ground motions. The analyses reveal a significant influence of the earthquake magnitude and focal depth on the distance scaling and different magnitude and distance scaling for the two soil classes. A linear magnitude and distance scaling is inferred from the results for the range of magnitudes $5.2{\leq}M_W{\leq}7.1$. The results obtained are checked through stochastic simulations and the influence of the stress drop and kappa values on the ground motion levels is assessed. In addition, five ground motion models which were tested in other studies using recordings from Vrancea earthquakes are analyzed in order to evaluate their corresponding host stress drop and kappa. The results show generally a direct connection between the host kappa values and the host stress drop values. Moreover, all the ground motion models depict magnitude dependent host kappa and stress drop levels.

Evaluation of ground motion scaling methods on drift demands of energy-based plastic designed steel frames under near-fault pulse-type earthquakes

  • Ganjavi, Behnoud;Hadinejad, Amirali;Jafarieh, Amir Hossein
    • Steel and Composite Structures
    • /
    • 제32권1호
    • /
    • pp.91-110
    • /
    • 2019
  • In the present study, the effects of six different ground motion scaling methods on inelastic response of nonlinear steel moment frames (SMFs) are studied. The frames were designed using energy-based PBPD approach with the design concept using pre-selected target drift and yield mechanism as performance limit state. Two target spectrums are considered: maximum credible earthquake spectrum (MCE) and design response spectrum (DRS). In order to investigate the effects of ground motion scaling methods on the response of the structures, totally 3216 nonlinear models including three frames with 4, 8 and 16 stories are designed using PBPD approach and then they are subjected to ensembles of ground motions including 42 far-fault and 90 near-fault pulse-type records which were scaled using the six different scaling methods in accordance to the two aforementioned target spectrums. The distributions of maximum inter-story drift over the height of the structures are computed and compared. Finally, the efficiency and reliability of each ground motion scaling method to estimate the maximum nonlinear inter-story drift of special steel moment frames designed by energy-based PBPD approach are statistically investigated, and the most suitable scaling methods with the lowest dispersion for two groups of earthquake ground motions are introduced.

Scaling of design earthquake ground motions for tall buildings based on drift and input energy demands

  • Takewaki, I.;Tsujimoto, H.
    • Earthquakes and Structures
    • /
    • 제2권2호
    • /
    • pp.171-187
    • /
    • 2011
  • Rational scaling of design earthquake ground motions for tall buildings is essential for safer, risk-based design of tall buildings. This paper provides the structural designers with an insight for more rational scaling based on drift and input energy demands. Since a resonant sinusoidal motion can be an approximate critical excitation to elastic and inelastic structures under the constraint of acceleration or velocity power, a resonant sinusoidal motion with variable period and duration is used as an input wave of the near-field and far-field ground motions. This enables one to understand clearly the relation of the intensity normalization index of ground motion (maximum acceleration, maximum velocity, acceleration power, velocity power) with the response performance (peak interstory drift, total input energy). It is proved that, when the maximum ground velocity is adopted as the normalization index, the maximum interstory drift exhibits a stable property irrespective of the number of stories. It is further shown that, when the velocity power is adopted as the normalization index, the total input energy exhibits a stable property irrespective of the number of stories. It is finally concluded that the former property on peak drift can hold for the practical design response spectrum-compatible ground motions.

Selecting and scaling ground motion time histories according to Eurocode 8 and ASCE 7-05

  • Ergun, Mustafa;Ates, Sevket
    • Earthquakes and Structures
    • /
    • 제5권2호
    • /
    • pp.129-142
    • /
    • 2013
  • Linear and nonlinear time history analyses have been becoming more common in seismic analysis and design of structures with advances in computer technology and earthquake engineering. One of the most important issues for such analyses is the selection of appropriate acceleration time histories and matching these histories to a code design acceleration spectrum. In literature, there are three sources of acceleration time histories: artificial records, synthetic records obtained from seismological models and accelerograms recorded in real earthquakes. Because of the increase of the number of strong ground motion database, using and scaling real earthquake records for seismic analysis has been becoming one of the most popular research issues in earthquake engineering. In general, two methods are used for scaling actual earthquake records: scaling in time domain and frequency domain. The objective of this study is twofold: the first is to discuss and summarize basic methodologies and criteria for selecting and scaling ground motion time histories. The second is to analyze scaling results of time domain method according to ASCE 7-05 and Eurocode 8 (1998-1:2004) criteria. Differences between time domain method and frequency domain method are mentioned briefly. The time domain scaling procedure is utilized to scale the available real records obtained from near fault motions and far fault motions to match the proposed elastic design acceleration spectrum given in the Eurocode 8. Why the time domain method is preferred in this study is stated. The best fitted ground motion time histories are selected and these histories are analyzed according to Eurocode 8 (1998-1:2004) and ASCE 7-05 criteria. Also, characteristics of both near fault ground motions and far fault ground motions are presented by the help of figures. Hence, we can compare the effects of near fault ground motions on structures with far fault ground motions' effects.

Effects of ground motion scaling on nonlinear higher mode building response

  • Wood, R.L.;Hutchinson, T.C.
    • Earthquakes and Structures
    • /
    • 제3권6호
    • /
    • pp.869-887
    • /
    • 2012
  • Ground motion scaling techniques are actively debated in the earthquake engineering community. Considerations such as what amplitude, over what period range and to what target spectrum are amongst the questions of practical importance. In this paper, the effect of various ground motion scaling approaches are explored using three reinforced concrete prototypical building models of 8, 12 and 20 stories designed to respond nonlinearly under a design level earthquake event in the seismically active Southern California region. Twenty-one recorded earthquake motions are selected using a probabilistic seismic hazard analysis and subsequently scaled using four different strategies. These motions are subsequently compared to spectrally compatible motions. The nonlinear response of a planar frameidealized building is evaluated in terms of plasticity distribution, floor level acceleration and uncorrelated acceleration amplification ratio distributions; and interstory drift distributions. The most pronounced response variability observed in association with the scaling method is the extent of higher mode participation in the nonlinear demands.

구조물 동적해석을 위한 현행 내진설계기준의 입력 지반 운동 선정 조건 타당성 평가 - I 선정방법 (Assessment of Code-specified Ground Motion Selection Criteria with Accurate Selection and Scaling Methods - I Ground Motion Selection)

  • 하성진;한상환;지현우
    • 한국지진공학회논문집
    • /
    • 제21권4호
    • /
    • pp.171-179
    • /
    • 2017
  • For estimating the seismic demand of buildings, most seismic design provisions permit conducting linear and nonlinear response history analysis. In order to obtain reliable results from response history analyses, a proper selection of input ground motions is required. In this study, an accurate algorithm for selecting and scaling ground motions is proposed, which satisfies the ASCE 7-10 criteria. In the proposed algorithm, a desired number of ground motions are sequentially scaled and selected from a ground motion library without iterations.

Ground motion selection and scaling for seismic design of RC frames against collapse

  • Bayati, Zeinab;Soltani, Masoud
    • Earthquakes and Structures
    • /
    • 제11권3호
    • /
    • pp.445-459
    • /
    • 2016
  • Quantitative estimation of seismic response of various structural systems at the collapse limit state is one of the most significant objectives in Performance-Based Earthquake Engineering (PBEE). Assessing the effects of uncertainties, due to variability in ground motion characteristics and random nature of earthquakes, on nonlinear structural response is a pivotal issue regarding collapse safety prediction. Incremental Dynamic Analysis (IDA) and fragility curves are utilized to estimate demand parameters and seismic performance levels of structures. Since producing these curves based on a large number of nonlinear dynamic analyses would be time-consuming, selection of appropriate earthquake ground motion records resulting in reliable responses with sufficient accuracy seems to be quite essential. The aim of this research study is to propose a methodology to assess the seismic behavior of reinforced concrete frames at collapse limit state via accurate estimation of seismic fragility curves for different Engineering Demand Parameters (EDPs) by using a limited number of ground motion records. Research results demonstrate that accurate estimating of structural collapse capacity is feasible through applying the proposed method offering an appropriate suite of limited ground motion records.

Influence of ground motion selection methods on seismic directionality effects

  • Cantagallo, Cristina;Camata, Guido;Spacone, Enrico
    • Earthquakes and Structures
    • /
    • 제8권1호
    • /
    • pp.185-204
    • /
    • 2015
  • This study investigates the impact of the earthquake incident angle on the structural demand and the influence of ground motion selection and scaling methods on seismic directionality effects. The structural demand produced by Non-Linear Time-History Analyses (NLTHA) varies with the seismic input incidence angle. The seismic directionality effects are evaluated by subjecting four three-dimensional reinforced concrete structures to different scaled and un-scaled records oriented along nine incidence angles, whose values range between 0 and 180 degrees, with an increment of 22.5 degrees. The results show that NLTHAs performed applying the ground motion records along the principal axes underestimate the structural demand prediction, especially when plan-irregular structures are analyzed. The ground motion records generate the highest demand when applied along the lowest strength structural direction and a high energy content of the records increases the structural demand corresponding to this direction. The seismic directionality impact on structural demand is particularly important for irregular buildings subjected to un-scaled accelerograms. However, the orientation effects are much lower if spectrum-compatible combinations of scaled records are used. In both cases, irregular structures should be analyzed first with pushover analyses in order to identify the weaker structural directions and then with NLTHAs for different incidence angles.

지진 구조 손상도 예측을 위한 지반 운동 수정법 평가 (Evaluation of Ground Motion Modification Methodologies for Seismic Structural Damage)

  • 허영애
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제17권4호
    • /
    • pp.112-118
    • /
    • 2013
  • 성능기반 내진설계 및 평가의 정밀도 향상에 있어서 적절한 지반운동 데이터 선정과 이를 합리적으로 수정하는 것에 대한 중요성이 부각되고 있다. 지반운동 데이터를 수정하는 방법으로 단일 진폭수정법 (Amplitude scaling)이 널리 사용되고 있으나, 단일 진폭수정법에서 는 단 하나의 주기, 특히 구조물의 고유주기에서만 그 응답스펙트럼 값이 설계스펙트럼의 값과 일치하도록 수정되므로 특정 지역의 지진 재해도에 대해 일관성 있는 구조 해석 결과를 기대하기 어렵다. 따라서 이에 대해 여러 가지 대안 수정법들이 제시되고 있으나 이들의 타당성을 평가할 수 있는 방안이 마련되어 있지 않다. 본 논문에서는 단일 진폭수정법의 문제점을 설명하고, 대안 수정법과 비교 평가하기 위한 구조 응답에 대한 회귀 모델을 제시하는데 목표를 두었다. 대안 수정법으로써 전체 주기 범위에서 지반운동의 응답스펙트럼이 설계스펙트럼의 값과 일치하도록 수정하는 다중 스펙트럼 수정법을 고려하였다. 설계스펙트럼은 ASCE7-05에 따라 구하였다.

구조물 동적해석을 위한 현행 내진설계기준의 입력 지반 운동 선정 조건 타당성 평가 - II 지진응답 (Assessment of Code-specified Ground Motion Selection Criteria with Accurate Selection and Scaling Methods - II Seismic Response)

  • 하성진;한상환;오장현
    • 한국지진공학회논문집
    • /
    • 제21권4호
    • /
    • pp.181-188
    • /
    • 2017
  • Current seismic design provisions such as ASCE 7-10 provide criteria for selecting ground motions for conducting response history analysis. This study is the sequel of a companion paper (I - Ground Motion Selection) for assessment of the ASCE 7-10 criteria. To assess of the ASCE 7-10 criteria, nonlinear response history analyses of twelve single degree of freedom (SDF) systems and one multi-degree of freedom (MDF) system are conducted in this study. The results show that the target seismic demands for SDF can be predicted using the mean seismic demands over seven and ten ground motions selected according to the proposed method within an error of 30% and 20%, respectively