• 제목/요약/키워드: scale model of the Solar System

검색결과 42건 처리시간 0.024초

실내 주광조도 간이 예측식을 활용한 담천공 시의 자연 채광 성능 평가 (Application of Simplified Daylight Prediction Method for Daylighting Performance Evaluation on Overcast Sky)

  • 윤갑천;윤수인;김성식;김강수
    • 한국태양에너지학회 논문집
    • /
    • 제34권5호
    • /
    • pp.1-9
    • /
    • 2014
  • Daylight is very useful to control the indoor environment, and can save energy in buildings. So it is necessary to evaluate the daylighting performance of buildings. We proposed a simplified equation that can be used in the early stages of design. And we verified the equation by using the measured illuminance data from the 1/5 scale model. We compared the calculated indoor illuminances and measured illuminance including Daylight Factors of scale model in order to verify the applicability of the simplified equation, and proved the analyzed values are acceptable. When we have a target value of the Daylight Factor, we just have to determine the window area, transmittance of the glazing system, and indoor surface reflectance, then can achieve it with this simplified equation.

PV 어레이의 계통연계 모의를 위한 PSCAD 사용자 정의 모델 개발 (Development of PSCAD User-defined Model for the Simulation of a PV Array)

  • 안선주;최준호
    • 한국태양에너지학회 논문집
    • /
    • 제31권5호
    • /
    • pp.134-139
    • /
    • 2011
  • Since large and small scale photovoltaic(PV) systems have been commercialized in many countries, it is necessary to assess the effects of PV systems on the electric power system. For this, the development of accurate simulation model of PV arrays is very important. PSCAD/EMTDC, a widely used simulation tool for analyzing the transient behavior of electrical apparatus and networks, does not have a standard model of a PV array. Therefore in order to simulate the PV array, users have to develop their own simulation model. However, the block-diagram-based model is very complicated, and it is hard to modify the model parameters. In this study, we develop the user-defined model of a PV array by using the Design Editor, which is provided by PSCAD program. The mathematical model of a PV array and the method to determine the parameters of nonlinear I-V equation are implemented in a Fortran code. The graphical user interface provides the users with easy and simple way to modify the PV array parameters and simulation conditions. In order to help the users, this model also provides the parameters of 10 commercial PV arrays.

태양광/$TiO_2$ 반응기용 반사판 최적화에 관한 연구 (A Study on the Optimization of Reflector for Reactor Using Solar $Light/TiO_2$)

  • 김동석;박영식
    • 한국환경보건학회지
    • /
    • 제32권4호
    • /
    • pp.373-380
    • /
    • 2006
  • The photocatalytic reactor using immobilized $TiO_2$ on silicone sealant was studied bench scale using solar light as the source of radiation. The influences of parameters such as shape, polishing extent and size of reflector, distance between reactor and reflector, an angle of inclination between reactor system and ground, were studies using Rhodamine B (RhB) as a model compound. respectively. The decolorization of round type among the reflector shapes was higher than that of the polygon and W type. The polishing extent of the reflector did not show the decolorization largely. The optimum size of reflector and distance between reactor and reflector were 38 cm and 6 cm, respectively.

남극 세종기지에서의 풍력자원 국소배치 민감도 분석 (Sensitivity Analysis of Wind Resource Micrositing at the Antarctic King Sejong Station)

  • 김석우;김현구
    • 한국태양에너지학회 논문집
    • /
    • 제27권4호
    • /
    • pp.1-9
    • /
    • 2007
  • Sensitivity analysis of wind resource micrositing has been performed through the application case at the Antarctic King Sejong station with the most representative micrositing softwares: WAsP, WindSim and Meteodyn WT. The wind data obtained from two met-masts separated 625m were applied as a climatology input condition of micro-scale wind mapping. A tower shading effect on the met-mast installed 20m apart from the warehouse has been assessed by the CFD software Fluent and confirmed a negligible influence on wind speed measurement. Theoretically, micro-scale wind maps generated by the two met-data located within the same wind system and strongly correlated meteor-statistically should be identical if nothing influenced on wind prediction but orography. They, however, show discrepancies due to nonlinear effects induced by surrounding complex terrain. From the comparison of sensitivity analysis, Meteodyn WT employing 1-equation turbulence model showed 68% higher RMSE error of wind speed prediction than that of WindSim using the ${\kappa}-{\epsilon}$ turbulence model, while a linear-theoretical model WAsP showed 21% higher error. Consequently, the CFD model WindSim would predict wind field over complex terrain more reliable and less sensitive to climatology input data than other micrositing models. The auto-validation method proposed in this paper and the evaluation result of the micrositing softwares would be anticipated a good reference of wind resource assessments in complex terrain.

통계적 및 인공지능 모형 기반 태양광 발전량 예측모델 비교 및 재생에너지 발전량 예측제도 정산금 분석 (Comparison of solar power prediction model based on statistical and artificial intelligence model and analysis of revenue for forecasting policy)

  • 이정인;박완기;이일우;김상하
    • 전기전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.355-363
    • /
    • 2022
  • 우리나라는 2050년 탄소중립을 목표로 신재생에너지 중심으로 에너지 공급원을 전환하고 확대하는 계획을 추진 중이다. 신재생에너지의 간헐적 특성으로 에너지 공급이 불안정성이 커짐에 따라 정확한 신재생에너지 발전량 예측의 중요성이 함께 커지고 있다. 이에 따라 정부는 신재생에너지를 집합화하여 관리하기 위한 소규모 전력중개시장을 개설하였고, 재생에너지 발전량 예측제도를 도입하여 예측정확도에 따라 정산금을 지급하는 제도를 시행 중이다. 본 논문에서는 우리나라 신재생에너지 전원의 대부분을 차지하는 태양광 발전에 대하여 통계적 및 인공지능 모형을 이용하여 예측모델을 구현하였으며, 각 모형의 예측정확도 결과를 비교 분석하였다. 비교 모델 중에서 CNN-LSTM(Convolutional Long Short-Term Memory Neural Networks) 모형이 가장 높은 성능을 가짐을 확인하였다. 예측정확도에 따른 예측제도 정산금 수익을 추정해보았고, 예측보유 기술 수준에 따라 수익 편차가 24% 정도 커질 수 있음을 확인하였다.

주택 지붕일체형 PV시스템 후면환기에 따른 발전성능 변화 실험연구 (Experimental Study on the Combined Effect of Power and Heat according to the Ventilation of Back Side in Roof Integrated PV System)

  • 윤종호;한규복;안영섭
    • 한국태양에너지학회 논문집
    • /
    • 제27권3호
    • /
    • pp.169-174
    • /
    • 2007
  • Building integrated photovoltaic(BIPV) system operates as a multi-functional building construction material. They not only produce electricity, but also are building integral components such as facade, roof, window and shading device. As PV modules function like building envelope in BIPV, combined thermal and PV performance should be simultaneously evaluated. This study is to establish basic Information for designing effective BIPV by discovering relations between temperature and generation capability through experiment when the PV module is used as roof material for houses. To do so, we established 3kW full scale mock-up model with real size house and attached an PV array by cutting in half. This is to assess temperature influence depending on whether there is a ventilation on the rear side of PV module or not.

대규모 PV시스템의 태양전지 어레이 구성법 (Solar Cell Arrays Connection of Large Scale PV System)

  • 유권중;송진수;노명근;성세진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.326-328
    • /
    • 1996
  • The 10kW or 1MW model of a photovoltaic array written in PSPICE is presented in this paper. A problem with this large scale centralized photovoltaic system is the decrease of power due to the resistance of cable connecting individual subarray with inverter. In this paper, we analyzed the relationship between the resistance of cable and subarray output power of 1MW photovoltaic system by the PSPICE modeling. As a result of simulation, we can proved that photovoltaic array output power is limitted by the resistance of cable.

  • PDF

태양광 발전시스템의 컨버터 고장에 따른 보상운전기법 (Fault tolerant control scheme for a converter in a photovoltaic system)

  • 박태식;허용호;이광운;문채주;곽노홍
    • 한국태양에너지학회 논문집
    • /
    • 제36권4호
    • /
    • pp.31-40
    • /
    • 2016
  • The demands for photovoltaic systems on a large scale have grown dramatically and require new technologies to get the high efficiency and reliable operations of power conversion systems. These needs can be realized by the cost-effective and high performance digital revolutions and faster semiconductor switching devices. However, the new power systems have been more sophisticated and their reliability becomes critical issues. In this paper, a new fault-tolerance power conversion scheme for the photovoltaic systems is proposed. The proposed fault-tolerant scheme is able to supply energy from solar panels to loads intermittently in spite of a front boost converter open failure, and its voltage and current controllers are designed to improve the transient performance by using an average model design scheme. The proposed approach is verified both by simulations. The results will enable more timely and wide usage of alternative/renewable energy systems resulting in increased energy security.

Investigation of the observed solar coronal plasma in EUV and X-rays in non-equilibrium ionization state

  • Lee, Jin-Yi;Raymond, John C.;Reeves, Katharine K.;Shen, Chengcai;Moon, Yong-Jae
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.53.1-53.1
    • /
    • 2018
  • During a major solar eruption, the erupting plasma is possibly out of the equilibrium ionization state because of its rapid heating or cooling. The non-equilibrium ionization process is important in a rapidly evolving system where the thermodynamical time scale is shorter than the ionization or recombination time scales. We investigate the effects of non-equilibrium ionization on EUV and X-ray observations by the Atmospheric Imaging Assembly (AIA) on board Solar Dynamic Observatory and X-ray Telescope (XRT) on board Hinode. For the investigation, first, we find the emissivities for all the lines of ions of elements using CHIANTI 8.07, and then we find the temperature responses multiplying the emissivities by the effective area for each AIA and XRT passband. Second, we obtain the ion fractions using a time-dependent ionization model (Shen et al. 2015), which uses an eigenvalue method, for all the lines of ion, as a function of temperature, and a characteristic time scale, $n_et$, where $n_e$ and t are density and time, respectively. Lastly, the ion fractions are multiplied to the temperature response for each passband, which results in a 2D grid for each combination of temperature and the characteristic time scale. This is the set of passband responses for plasma that is rapidly ionized in a current sheet or a shock. We investigate an observed event which has a relatively large uncertainty in an analysis using a differential emission measure method assuming equilibrium ionization state. We verify whether the observed coronal plasmas are in non-equilibrium or equilibrium ionization state using the passband responses.

  • PDF

태양열 이용을 위한 직접접촉식 액-액 열교환기 특성 (Characteristics of Liquid-Liquid Direct Contact Heat Exchanger for a Solar System)

  • 강인석;김종보;강용혁;곽희열
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3276-3286
    • /
    • 1994
  • In most direct contact liquid-liquid heat exchangers, oil or hydrocarbon with a density less than water is normally used as dispersed working fluid. The main difficulty that arises with this arrangement lies in the control of the interface at the top of the column. When it is connected with a solar collector which uses water as its working fluid, the main difficulties arise from the fact that the water can be frozen during winter time. In order to solve these problems and to demonstrate the technical feasibility of a direct contact liquid-liquid heat exchanger, liquids heavier than water with low freezing temperature has been utilized as dispersed phase liquids in a small laboratory scale model made of pyrex glass. In the present investigation, dimethyl phthalate(C/sub 6/H/sub 4/)COOCH/sub 3/)/sub 2/) and diethyl phthalate (C/sub 6/H/sub 4/(CO/sub 2/C/sub 2/H/sub 5/)/sub 2/) are utilized as heavy dispersed phase working fluids. The results of the present investigation the technical in the utilization of heavier dispersed working liquid in the spray-column liquid-liquid heat exchanger for a solar system. The overall average temperature difference along the column is found to be almost half of the initial temperature difference between the dispersed and the continuous phase. Despite the fact that the two phthalates tested in the experiment differ significantly in some of their physical properties, the volumetric heat transfer coefficients in terms of dispersed fluid superficial velocities were found to be similar for both phthalates tested.