• Title/Summary/Keyword: scale detection

Search Result 1,199, Processing Time 0.031 seconds

An Edge Detection Method for Gray Scale Images Based on their Fuzzy System Representation

  • Moon, Byung-Soo;Lee, Hyun-Chul;Kim, Jang-Yeol
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.283-286
    • /
    • 2001
  • Based on a fuzzy system representation of gray scale images, we derive an edge detection algorithm whose convolution kernel is different from the known kernels such as those of Roberts', Prewitt's or Sobel's gradient. Our fuzzy system representation is an exact representation of the bicubic spline function which represents the gray scale image approximately. Hence the fuzzy system is a continuous function and it provides a natural way to define the gradient and the Laplacian operator. We show that the gradient at grid points can be evaluated by taking the convolution of the image with a 3 3 kernel. We also show that our gradient coupled with the approximate value of the continuous function generates an edge detection method which creates edge images clearer than those by other methods. A few examples of applying our methods are included.

  • PDF

A wavelet finite element-based adaptive-scale damage detection strategy

  • He, Wen-Yu;Zhu, Songye;Ren, Wei-Xin
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.285-305
    • /
    • 2014
  • This study employs a novel beam-type wavelet finite element model (WFEM) to fulfill an adaptive-scale damage detection strategy in which structural modeling scales are not only spatially varying but also dynamically changed according to actual needs. Dynamical equations of beam structures are derived in the context of WFEM by using the second-generation cubic Hermite multiwavelets as interpolation functions. Based on the concept of modal strain energy, damage in beam structures can be detected in a progressive manner: the suspected region is first identified using a low-scale structural model and the more accurate location and severity of the damage can be estimated using a multi-scale model with local refinement in the suspected region. Although this strategy can be implemented using traditional finite element methods, the multi-scale and localization properties of the WFEM considerably facilitate the adaptive change of modeling scales in a multi-stage process. The numerical examples in this study clearly demonstrate that the proposed damage detection strategy can progressively and efficiently locate and quantify damage with minimal computation effort and a limited number of sensors.

DRF-based Object Detection Using the Object Adaptive Patch in the Satellite Imagery

  • Choi, Hyoung-Min;Lee, Kyoung-Mu;Lee, Sang-Uk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.85-88
    • /
    • 2009
  • In this paper, we propose a DRF-based object detection method using the object adaptive patch in the satellite imagery. It is a Discriminative Random Fields (DRF) based work, so the detection is done by labeling to the possible patches in the image. For the feature information of each patch, we use the multi-scale and object adaptive patch and its texton histogram, instead of using the single scale and fixed grid patch. So, we can include contextual layout of texture information around the object. To make object adaptive patch, we use "superpixel lattice" scheme. As a result, each group of labeled patches represents the object or object's presence region. In the experiment, we compare the detection result with a fixed grid scheme and shows our result is more close to the object shape.

  • PDF

Multi-scale Diffusion-based Salient Object Detection with Background and Objectness Seeds

  • Yang, Sai;Liu, Fan;Chen, Juan;Xiao, Dibo;Zhu, Hairong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4976-4994
    • /
    • 2018
  • The diffusion-based salient object detection methods have shown excellent detection results and more efficient computation in recent years. However, the current diffusion-based salient object detection methods still have disadvantage of detecting the object appearing at the image boundaries and different scales. To address the above mentioned issues, this paper proposes a multi-scale diffusion-based salient object detection algorithm with background and objectness seeds. In specific, the image is firstly over-segmented at several scales. Secondly, the background and objectness saliency of each superpixel is then calculated and fused in each scale. Thirdly, manifold ranking method is chosen to propagate the Bayessian fusion of background and objectness saliency to the whole image. Finally, the pixel-level saliency map is constructed by weighted summation of saliency values under different scales. We evaluate our salient object detection algorithm with other 24 state-of-the-art methods on four public benchmark datasets, i.e., ASD, SED1, SED2 and SOD. The results show that the proposed method performs favorably against 24 state-of-the-art salient object detection approaches in term of popular measures of PR curve and F-measure. And the visual comparison results also show that our method highlights the salient objects more effectively.

ENHANCEMENT AND SMOOTHING OF HYPERSPECTAL REMOTE SENSING DATA BY ADVANCED SCALE-SPACE FILTERING

  • Konstantinos, Karantzalos;Demetre, Argialas
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.736-739
    • /
    • 2006
  • While hyperspectral data are very rich in information, their processing poses several challenges such as computational requirements, noise removal and relevant information extraction. In this paper, the application of advanced scale-space filtering to selected hyperspectral bands was investigated. In particular, a pre-processing tool, consisting of anisotropic diffusion and morphological leveling filtering, has been developed, aiming to an edge-preserving smoothing and simplification of hyperspectral data, procedures which are of fundamental importance during feature extraction and object detection. Two scale space parameters define the extent of image smoothing (anisotropic diffusion iterations) and image simplification (scale of morphological levelings). Experimental results demonstrated the effectiveness of the developed scale space filtering for the enhancement and smoothing of hyperspectral remote sensing data and their advantage against watershed over-segmentation problems and edge detection.

  • PDF

H_ Fault Detection Observer Design for Large Scale Time-Invariant Systems (대규모 선형시불변 시스템을 위한 H_ 고장검출 관측기 설계)

  • Lee, Ho-Jae;Kim, Do-Wan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.818-822
    • /
    • 2009
  • In this paper, we consider a decentralized observer design problem for fault detection in large-scaled linear time-invariant systems. Since the fault detection residual is desired to be sensitive on the fault, we use the H_ index performance criterion. Sufficient conditions for the existence of such an observer is presented in terms of linear matrix inequalities. Simulation results show the effectiveness of the proposed method.

Image Scale Prediction Using Key-point Clusters on Multi-scale Image Space (다중 스케일 영상 공간에서 특징점 클러스터를 이용한 영상스케일 예측)

  • Ryu, kwon-Yeal
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • In this paper, we propose the method to eliminate repetitive processes for key-point detection on multi-scale image space. The proposed method detects key-points from the original image, and select a good key-points using the cluster filters, and create the key-point clusters. And it select reference objects by using direction angles of the key-point clusters, predict the scale of the original image by using the distributed distance ratio. It transform the scale of the reference image, and apply the detection of key-points to the transformed reference image. In the results of the experiment, the proposed method can be found to improve the key-points detection time by 75 % and 71 % compared to SIFT method and scaled ORB method using the multi-scale images.

Multi-spectral Vehicle Detection based on Convolutional Neural Network

  • Choi, Sungil;Kim, Seungryong;Park, Kihong;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.12
    • /
    • pp.1909-1918
    • /
    • 2016
  • This paper presents a unified framework for joint Convolutional Neural Network (CNN) based vehicle detection by leveraging multi-spectral image pairs. With the observation that under challenging environments such as night vision and limited light source, vehicle detection in a single color image can be more tractable by using additional far-infrared (FIR) image, we design joint CNN architecture for both RGB and FIR image pairs. We assume that a score map from joint CNN applied to overall image can be considered as confidence of vehicle existence. To deal with various scale ratios of vehicle candidates, multi-scale images are first generated scaling an image according to possible scale ratio of vehicles. The vehicle candidates are then detected on local maximal on each score maps. The generation of overlapped candidates is prevented with non-maximal suppression on multi-scale score maps. The experimental results show that our framework have superior performance than conventional methods with a joint framework of multi-spectral image pairs reducing false positive generated by conventional vehicle detection framework using only single color image.

An automatic detection method for lung nodules based on multi-scale enhancement filters and 3D shape features

  • Hao, Rui;Qiang, Yan;Liao, Xiaolei;Yan, Xiaofei;Ji, Guohua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.347-370
    • /
    • 2019
  • In the computer-aided detection (CAD) system of pulmonary nodules, a high false positive rate is common because the density and the computed tomography (CT) values of the vessel and the nodule in the CT images are similar, which affects the detection accuracy of pulmonary nodules. In this paper, a method of automatic detection of pulmonary nodules based on multi-scale enhancement filters and 3D shape features is proposed. The method uses an iterative threshold and a region growing algorithm to segment lung parenchyma. Two types of multi-scale enhancement filters are constructed to enhance the images of nodules and blood vessels in 3D lung images, and most of the blood vessel images in the nodular images are removed to obtain a suspected nodule image. An 18 neighborhood region growing algorithm is then used to extract the lung nodules. A new pulmonary nodules feature descriptor is proposed, and the features of the suspected nodules are extracted. A support vector machine (SVM) classifier is used to classify the pulmonary nodules. The experimental results show that our method can effectively detect pulmonary nodules and reduce false positive rates, and the feature descriptor proposed in this paper is valid which can be used to distinguish between nodules and blood vessels.

CutPaste-Based Anomaly Detection Model using Multi Scale Feature Extraction in Time Series Streaming Data

  • Jeon, Byeong-Uk;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2787-2800
    • /
    • 2022
  • The aging society increases emergency situations of the elderly living alone and a variety of social crimes. In order to prevent them, techniques to detect emergency situations through voice are actively researched. This study proposes CutPaste-based anomaly detection model using multi-scale feature extraction in time series streaming data. In the proposed method, an audio file is converted into a spectrogram. In this way, it is possible to use an algorithm for image data, such as CNN. After that, mutli-scale feature extraction is applied. Three images drawn from Adaptive Pooling layer that has different-sized kernels are merged. In consideration of various types of anomaly, including point anomaly, contextual anomaly, and collective anomaly, the limitations of a conventional anomaly model are improved. Finally, CutPaste-based anomaly detection is conducted. Since the model is trained through self-supervised learning, it is possible to detect a diversity of emergency situations as anomaly without labeling. Therefore, the proposed model overcomes the limitations of a conventional model that classifies only labelled emergency situations. Also, the proposed model is evaluated to have better performance than a conventional anomaly detection model.