• Title/Summary/Keyword: scale detection

Search Result 1,199, Processing Time 0.025 seconds

Combining Shape and SIFT Features for 3-D Object Detection and Pose Estimation (효과적인 3차원 객체 인식 및 자세 추정을 위한 외형 및 SIFT 특징 정보 결합 기법)

  • Tak, Yoon-Sik;Hwang, Een-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.429-435
    • /
    • 2010
  • Three dimensional (3-D) object detection and pose estimation from a single view query image has been an important issue in various fields such as medical applications, robot vision, and manufacturing automation. However, most of the existing methods are not appropriate in a real time environment since object detection and pose estimation requires extensive information and computation. In this paper, we present a fast 3-D object detection and pose estimation scheme based on surrounding camera view-changed images of objects. Our scheme has two parts. First, we detect images similar to the query image from the database based on the shape feature, and calculate candidate poses. Second, we perform accurate pose estimation for the candidate poses using the scale invariant feature transform (SIFT) method. We earned out extensive experiments on our prototype system and achieved excellent performance, and we report some of the results.

On the use of numerical models for validation of high frequency based damage detection methodologies

  • Aguirre, Diego A.;Montejo, Luis A.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.4
    • /
    • pp.383-397
    • /
    • 2015
  • This article identifies and addresses current limitations on the use of numerical models for validation and/or calibration of damage detection methodologies that are based on the analysis of the high frequency response of the structure to identify the occurrence of abrupt anomalies. Distributed-plasticity non-linear fiber-based models in combination with experimental data from a full-scale reinforced concrete column test are used to point out current modeling techniques limitations. It was found that the numerical model was capable of reproducing the global and local response of the structure at a wide range of inelastic demands, including the occurrences of rebar ruptures. However, when abrupt sudden damage occurs, like rebar fracture, a high frequency pulse is detected in the accelerations recorded in the structure that the numerical model is incapable of reproducing. Since the occurrence of such pulse is fundamental on the detection of damage, it is proposed to add this effect to the simulated response before it is used for validation purposes.

Comparison of CNN Structures for Detection of Surface Defects (표면 결함 검출을 위한 CNN 구조의 비교)

  • Choi, Hakyoung;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1100-1104
    • /
    • 2017
  • A detector-based approach shows the limited performances for the defect inspections such as shallow fine cracks and indistinguishable defects from background. Deep learning technique is widely used for object recognition and it's applications to detect defects have been gradually attempted. Deep learning requires huge scale of learning data, but acquisition of data can be limited in some industrial application. The possibility of applying CNN which is one of the deep learning approaches for surface defect inspection is investigated for industrial parts whose detection difficulty is challenging and learning data is not sufficient. VOV is adopted for pre-processing and to obtain a resonable number of ROIs for a data augmentation. Then CNN method is applied for the classification. Three CNN networks, AlexNet, VGGNet, and mofified VGGNet are compared for experiments of defects detection.

Scale Invariant Single Face Tracking Using Particle Filtering With Skin Color

  • Adhitama, Perdana;Kim, Soo Hyung;Na, In Seop
    • International Journal of Contents
    • /
    • v.9 no.3
    • /
    • pp.9-14
    • /
    • 2013
  • In this paper, we will examine single face tracking algorithms with scaling function in a mobile device. Face detection and tracking either in PC or mobile device with scaling function is an unsolved problem. Standard single face tracking method with particle filter has a problem in tracking the objects where the object can move closer or farther from the camera. Therefore, we create an algorithm which can work in a mobile device and perform a scaling function. The key idea of our proposed method is to extract the average of skin color in face detection, then we compare the skin color distribution between the detected face and the tracking face. This method works well if the face position is located in front of the camera. However, this method will not work if the camera moves closer from the initial point of detection. Apart from our weakness of algorithm, we can improve the accuracy of tracking.

The Application of Dyadic Wavelet In the RS Image Edge Detection

  • Qiming, Qin;Wenjun, Wang;Sijin, Chen
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1268-1271
    • /
    • 2003
  • In the edge detection of RS image, the useful detail losing and the spurious edge often appear. To solve the problem, we use the dyadic wavelet to detect the edge of surface features by combining the edge detecting with the multi-resolution analyzing of the wavelet transform. Via the dyadic wavelet decomposing, we obtain the RS image of a certain appropriate scale, and figure out the edge data of the plane and the upright directions respectively, then work out the grads vector module of the surface features, at last by tracing them we get the edge data of the object therefore build the RS image which obtains the checked edge. This method can depress the effect of noise and examine exactly the edge data of the object by rule and line. With an experiment of a RS image which obtains an airport, we certificate the feasibility of the application of dyadic wavelet in the object edge detection.

  • PDF

An Effective Retinal Vessel and Landmark Detection Algorithm in RGB images

  • Jung Eun-Hwa
    • International Journal of Contents
    • /
    • v.2 no.3
    • /
    • pp.27-32
    • /
    • 2006
  • We present an effective algorithm for automatic tracing of retinal vessel structure and vascular landmark extraction of bifurcations and ending points. In this paper we deal with vascular patterns from RGB images for personal identification. Vessel tracing algorithms are of interest in a variety of biometric and medical application such as personal identification, biometrics, and ophthalmic disorders like vessel change detection. However eye surface vasculature tracing in RGB images has many problems which are subject to improper illumination, glare, fade-out, shadow and artifacts arising from reflection, refraction, and dispersion. The proposed algorithm on vascular tracing employs multi-stage processing of ten-layers as followings: Image Acquisition, Image Enhancement by gray scale retinal image enhancement, reducing background artifact and illuminations and removing interlacing minute characteristics of vessels, Vascular Structure Extraction by connecting broken vessels, extracting vascular structure using eight directional information, and extracting retinal vascular structure, and Vascular Landmark Extraction by extracting bifurcations and ending points. The results of automatic retinal vessel extraction using jive different thresholds applied 34 eye images are presented. The results of vasculature tracing algorithm shows that the suggested algorithm can obtain not only robust and accurate vessel tracing but also vascular landmarks according to thresholds.

  • PDF

Rubber O-ring defect detection system using K-fold cross validation and support vector machine (K-겹 교차 검증과 서포트 벡터 머신을 이용한 고무 오링결함 검출 시스템)

  • Lee, Yong Eun;Choi, Nak Joon;Byun, Young Hoo;Kim, Dae Won;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.68-73
    • /
    • 2021
  • In this study, the detection of rubber o-ring defects was carried out using k-fold cross validation and Support Vector Machine (SVM) algorithm. The data process was carried out in 3 steps. First, we proceeded with a frame alignment to eliminate unnecessary regions in the learning and secondly, we applied gray-scale changes for computational reduction. Finally, data processing was carried out using image augmentation to prevent data overfitting. After processing data, SVM algorithm was used to obtain normal and defect detection accuracy. In addition, we applied the SVM algorithm through the k-fold cross validation method to compare the classification accuracy. As a result, we obtain results that show better performance by applying the k-fold cross validation method.

Deep Learning-Based Real-Time Pedestrian Detection on Embedded GPUs (임베디드 GPU에서의 딥러닝 기반 실시간 보행자 탐지 기법)

  • Vien, An Gia;Lee, Chul
    • Journal of Broadcast Engineering
    • /
    • v.24 no.2
    • /
    • pp.357-360
    • /
    • 2019
  • We propose an efficient single convolutional neural network (CNN) for pedestrian detection on embedded GPUs. We first determine the optimal number of the convolutional layers and hyper-parameters for a lightweight CNN. Then, we employ a multi-scale approach to make the network robust to the sizes of the pedestrians in images. Experimental results demonstrate that the proposed algorithm is capable of real-time operation, while providing higher detection performance than conventional algorithms.

Multiple Properties-Based Moving Object Detection Algorithm

  • Zhou, Changjian;Xing, Jinge;Liu, Haibo
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.124-135
    • /
    • 2021
  • Object detection is a fundamental yet challenging task in computer vision that plays an important role in object recognition, tracking, scene analysis and understanding. This paper aims to propose a multiproperty fusion algorithm for moving object detection. First, we build a scale-invariant feature transform (SIFT) vector field and analyze vectors in the SIFT vector field to divide vectors in the SIFT vector field into different classes. Second, the distance of each class is calculated by dispersion analysis. Next, the target and contour can be extracted, and then we segment the different images, reversal process and carry on morphological processing, the moving objects can be detected. The experimental results have good stability, accuracy and efficiency.

TRUNCATED SOFTWARE RELIABILITY GROWTH MODEL

  • Prince Williams, D.R.;Vivekanandan, P.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.761-769
    • /
    • 2002
  • Due to the large scale application of software systems, software reliability plays an important role in software developments. In this paper, a software reliability growth model (SRGM) is proposed. The testing time on the right is truncated in this model. The instantaneous failure rate, mean-value function, error detection rate, reliability of the software, estimation of parameters and the simple applications of this model are discussed .