• Title/Summary/Keyword: scalar ground motion IMs

Search Result 2, Processing Time 0.015 seconds

Evaluation of scalar structure-specific ground motion intensity measures for seismic response prediction of earthquake resistant 3D buildings

  • Kostinakis, Konstantinos G.;Athanatopoulou, Asimina M.
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.1091-1114
    • /
    • 2015
  • The adequacy of a number of advanced earthquake Intensity Measures (IMs) to predict the structural damage of earthquake resistant 3D R/C buildings is investigated in the present paper. To achieve this purpose three symmetric in plan and three asymmetric 5-storey R/C buildings are analyzed by nonlinear time history analysis using 74 bidirectional earthquake records. The two horizontal accelerograms of each ground motion are applied along the structural axes of the buildings and the structural damage is expressed in terms of the maximum and average interstorey drift as well as the overall structural damage index. For each individual pair of accelerograms the values of the aforementioned seismic damage measures are determined. Then, they are correlated with several strong motion scalar IMs that take into account both earthquake and structural characteristics. The research identified certain IMs which exhibit strong correlation with the seismic damage measures of the studied buildings. However, the degree of correlation between IMs and the seismic damage depends on the damage measure adopted. Furthermore, it is confirmed that the widely used spectral acceleration at the fundamental period of the structure is a relatively good IM for medium rise R/C buildings that possess small structural eccentricity.

A dominant vibration mode-based scalar ground motion intensity measure for single-layer reticulated domes

  • Zhong, Jie;Zhi, Xudong;Fan, Feng
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.245-264
    • /
    • 2016
  • A suitable ground motion intensity measure (IM) plays a crucial role in the seismic performance assessment of a structure. In this paper, we introduce a scalar IM for use in evaluating the seismic response of single-layer reticulated domes. This IM is defined as the weighted geometric mean of the spectral acceleration ordinates at the periods of the dominant vibration modes of the structure considered, and the modal strain energy ratio of each dominant vibration mode is the corresponding weight. Its applicability and superiority to 11 other existing IMs are firstly investigated in terms of correlation with the nonlinear seismic response, efficiency and sufficiency using the results of incremental dynamic analyses which are performed for a typical single-layer reticulated dome. The hazard computability of this newly proposed IM is also briefly discussed and illustrated. A conclusion is drawn that this dominant vibration mode-based scalar IM has the characteristics of strong correlation, high efficiency, good sufficiency as well as hazard computability, and thereby is appropriate for use in the prediction of seismic response of single-layer reticulated domes.